Дипломная работа: Корректирующие коды

Старшинство разрядов принимаем слева на право, в соответствии с их поступлением на вход декодера.

Находим корректирующие разряды для каждого информационного слова, как результат суммирования по модулю два строк проверочной матрицы номера, которых совпадают с номерами единиц в информационных разрядах кода.

Например, для информационного слова I = [1001] кодовое слово имеет вид

.

Передаваемые в канал кодовые комбинации имеют вид:

1) 0000 000 5) 0010 110 9) 0001 101 13) 0011 011

2) 1000 111 6) 1010 001 10) 1001 010 14) 1011 100

3) 0100 011 7) 0110 101 11) 0101 110 15) 0111 000

4) 1100 100 8) 1110 010 12) 1101 101 16) 1111 111

Процесс декодирования состоит в определении соответствия принятого кодового слова, переданному информационному и осуществляется с помощью проверочной матрицы H(7, 4) .


Для построенного (7, 4)-кода проверочная матрица имеет вид

.

Строки проверочной матрицы определяют правила формирования проверок, позволяющие определить синдром ошибки.

Пусть в процессе передачи произошла ошибка во 2-м информационном разряде 1 1 0 1 1 0 0 1

В соответствии с проверочной матрицей составляем проверочные векторы

p1 Å a1 Å a2 Å a4 =S1 = 0 Å 1 Å 1 Å 0 = 0;

p2 Å a1 Å a2 Å a3 =S2 = 0 Å 1 Å 1 Å 1 = 1 ;

p3 Å a1 Å a3 Å a4 =S3 = 1 Å 1 Å 0 Å 1 = 1.

Синдром 011 показывает, что ошибка произошла во 2-м информационном разряде, который необходимо проинвертировать.

Пример 2. Построить образующую матрицу группового кода, для передачи 100 различных сообщений и способную исправлять возмож-но большее число ошибок.

Решение: Объем кода равен N = 2k . При 100 сообщениях: 100 £ N £ 2k , откуда k = 7 . По заданной длине информационного слова, используя соотношения:

n = k+m, 2n ³ (n+1)2k и 2m ³ n+1

вычислим основные параметры кода n и m .

m=[log2 {(k+1)+ [log2 (k+1)]}]=[log2 {(7+1)+ [log2 (7+1)]}]=4.

Откуда n = 11, т. е. получили (11, 7)-код.

В качестве информационной матрицы выбираем единичную матрицу I (7x7).Проверочная матрица содержит 4 столбца и 7 строк, которые содержат r1 £ d0 -1 единиц в четырехразрядном коде (2, 3, 4-единицы).

.

3. КОД ХЭММИНГА

Код Хэмминга относится к классу линейных кодов и представляет собой систематический код – код, в котором информационные и контрольные биты расположены на строго определенных местах в кодовой комбинации.

Код Хэмминга, как и любой (n, k )- код, содержит к информационных и m = n-k избыточных (проверочных) бит.

К-во Просмотров: 378
Бесплатно скачать Дипломная работа: Корректирующие коды