Дипломная работа: Корректирующие коды
Курс: Теория информации и кодирования
Тема: КОРРЕКТИРУЮЩИЕ КОДЫ
Содержание
1. КОРРЕКТИРУЮЩИЕ КОДЫ. ОСНОВНЫЕ ПОНЯТИЯ
2. ЛИНЕЙНЫЕ ГРУППОВЫЕ КОДЫ
3. КОД ХЭММИНГА
Список Литературы
1. КОРРЕКТИРУЮЩИЕ КОДЫ. ОСНОВНЫЕ ПОНЯТИЯ
В соответствии с теоремой Шеннона для дискретного канала с помехами, вероятность ошибки при передаче данных по каналу связи может быть сколь угодно малой при выборе соответствующего метода кодирования сигнала, т. е. помеха не накладывает существенных ограничений на точность передачи информации (данных). Достоверность передаваемой информации может быть обеспечена применением корректирующих кодов.
Помехоустойчивыми или корректирующими кодами называются коды, позволяющие обнаружить и устранить ошибки при передаче информации из-за воздействия помех.
Наиболее распространенным является класс кодов с коррекцией одиночных и обнаружением двойных ошибок (КО-ОД). Самым известных среди этих кодов является код Хэмминга, имеющий простой и удобный для технической реализации алгоритм обнаружения и исправления одиночной ошибки.
В ЭВМ эти коды используются для повышения надежности оперативной памяти (ОП) и магнитных дисков. Число ошибок в ЭВМ зависит от типа неисправностей элементов схем (например, неисправность одного элемента интегральной схемы (ИС) вызывает одиночную ошибку, а всей ИС ОП - кратную). Для обнаружения кратных ошибок используется код КО-ОД-ООГ (коррекция одиночной, обнаружение двойной и обнаружение кратной ошибки в одноименной группе битов).
Среди корректирующих кодов широко используются циклические коды, в ЭВМ эти коды применяются при последовательной передаче данных между ЭВМ и внешними устройствами, а также при передаче данных по каналам связи. Для исправления двух и более ошибок (d0 ³ 5 ) используются циклические коды БЧХ (Боуза - Чоудхури - Хоквингема), а также Рида-Соломона, которые широко используются в устройствах цифровой записи звука на магнитную ленту или оптические компакт-диски и позволяющие осуществлять коррекцию групповых ошибок. Способность кода обнаруживать и исправлять ошибки достигается за счет введений избыточности в кодовые комбинации, т. е. кодовым комбинациям из к двоичных информационных символов, поступающих на вход кодирующего устройства, соответствует на выходе последовательность из n двоичных символов (такой код называется (n, k ) - кодом).
Если N0 = 2n -общее число кодовых комбинаций, а N = 2k - число разрешенных, то число запрещенных кодовых комбинаций равно
N0 -N = 2n -2k .
При этом число ошибок, которое приводит к запрещенной кодовой комбинации равно:
, (1)
где S - кратность ошибки, т. е. количество искаженных символов в кодовой комбинации S = 0, 1, 2, ...
Cn i - сочетания из n элементов по i , вычисляемое по формуле:
, (2)
дляS = 0 ;
S = 1 ;
S = 2 ;
S = 3 ; ит. д.
Для исправления S ошибок количество комбинаций кодового слова, составленного из m проверочных разрядов N = 2m , должно быть больше возможного числа ошибок (2), при этом количество обнаруживаемых ошибок в два раза больше, чем исправляемых
(3)
2m ³ откуда .
Для одиночной ошибки, как наиболее вероятной .
В зависимости от исходных данных кода (n или k ) можно использовать
формулы
--> ЧИТАТЬ ПОЛНОСТЬЮ <--