Дипломная работа: Марковская и полумарковская модели открытой сети с тремя узлами

Рисунок 1.2.1

Он представляет из себя систему, отличающуюся от только тем, что интенсивность обслуживания зависит от числа заявок в ней , .

Найдем стационарное распределение для такого изолированного процесса. Граф переходов изобразится следующим образом.



0 1 2 …


Рисунок 1.2.2

Уравнения равновесия для вертикальных сечений имеют вид ( на рисунке 1.2.2 оно изображено пунктирной линией ).

, , ,

Тогда

.

Из условия нормировки находим, что

.

Таким образом, , где равны

, (1.2.2)

, (1.2.3)

. (1.2.4)

Стационарное распределение существует и единственно, если выполняется условие эргодичности:

и (1.2.5)

Теорема 1.2.1.( Разложения Джексона) Пусть уравнение трафика (1.2.1) имеет единственное положительное решение и выполнено условие эргодичности (1.2.5). Тогда финальные стационарные вероятности состояний сети Джексона имеют вид

, (1.2.6)

где определяются по формуле

, (1.2.7)

в которой определяется формулой

. (1.2.8)

Согласно теореме 1.2.1, стационарное распределение представимо в форме произведения множителей характеризующих узлы; каждый множитель есть стационарное распределение узла, то есть

,

где из формулы (1.2.2), из формулы (1.2.3), из формулы (1.2.4).

К-во Просмотров: 482
Бесплатно скачать Дипломная работа: Марковская и полумарковская модели открытой сети с тремя узлами