Дипломная работа: Марковская и полумарковская модели открытой сети с тремя узлами

(1.2.9)

=.

1.3 Достаточное условие эргодичности

Теорема 1.3.1 (Эргодическая теорема Фостера).

Регулярная Марковская цепь с непрерывным временем и счетным числом состояний эргодична, если она неприводима и система уравнений

имеет нетривиальное решение такое, что При этом существует единственное стационарное распределение, которое совпадает с эргодическим. [2, с. 8-14]

Эргодичность исследуем в соответствии с теоремой 1.3.1. Рассмотрим условия теоремы.

Регулярность следует из того, что .

, , .

Согласно рисунку 1.1, получим:

, , .

Таким образом, регулярность выполняется.

Так как все состояния сообщаются с нулевым, то есть в любое состояние можно перейти из нулевого и в можно перейти из любого состояния,путем поступления, обслуживания и ухода заявок из сети, то отсюда следует неприводимость.

Примечание – здесь учитывается, что матрица переходов неприводима.

В качестве нетривиального решения системы уравнений из теоремы 1.3.1 возьмем . Тогда для эргодичности потребуется, чтобы . Тогда получим,

,

где

,

Последний ряд сходится по признаку сравнения, если сходится ряд

(1.3.1)

Условие (1.3.1) и есть искомое условие эргодичности. Если это условие будет выполнятся, то будет существовать единственное стационарное распределение, совпадающее с эргодическим.


2. ПОЛУМАРКОВСКАЯ МОДЕЛЬ СЕТИ С ТРЕМЯ УЗЛАМИ

Пусть имеется открытая сеть массового обслуживания, состоящая из трёх узлов, в которую поступает простейший поток заявок с параметром . Причём, в первую систему массового обслуживания, входящая заявка поступает с вероятностью . Времена обслуживания заявок в -ом узле заданы функцией распределения времени обслуживания -ым прибором одной заявки , . При этом налагается следующее требование

, . (2.1)

Дисциплины обслуживания заявок в системах сети LCFSPR - заявка, поступающая в -ый узел, вытесняет заявку с прибора и начинает обслуживаться. Вытесненная с прибора заявка становится в начало очереди. Схематически сеть изображена на рисунке 2.1.


Рисунок 2.1

Состояние сети описывается случайным процессом

,

где , , - остаточное время обслуживания заявки, стоящей в -ой позиции.

Примечание. Случайный процесс

К-во Просмотров: 490
Бесплатно скачать Дипломная работа: Марковская и полумарковская модели открытой сети с тремя узлами