Дипломная работа: Математические основы системы остаточных классов
Рецензенты: Выполнила:
___________________________ Пивоварова Елена Николаевна
___________________________ студентка 5 курса, гр. «Б»
специальности математика
очной формы обучения
Дата защиты: Научный руководитель:
«______» __________________ Копыткова Людмила Борисовна
к. ф.-м. н., доцент
Ставрополь, 2004 г.
Оглавление
Введение
Глава 1. Теоретико-числовая база построения СОК
§ 1. Сравнения и их основные свойства
§ 2. Теорема о делении с остатком. Алгоритм Евклида
§ 3. Китайская теорема об остатках и её роль в представлении чисел в СОК
§ 4. Теоремы Эйлера и Ферма, их роль в вычислении мультипликативных обратных элементов по данному модулю
§ 5. Числа Мерсенна, Ферма и операции над ними
Глава 2. Математические модели модулярного представления и параллельной обработки информации
§ 1. Представление числа в СОК. Модульные операции
§ 2. Основные методы и алгоритмы перехода от позиционного представления к остаткам
§ 3. Восстановление позиционного представления числа по его остаткам
§ 4. Расширение диапазона представления чисел
Глава 3. Программная эммуляция алгоритмов перевода чисел из СОК в ПСС и обратно и алгоритма RSA
Цитированная литература
Введение
Инженеры и программисты, а также математики знакомы с таким понятием как цифровая обработка сигналов. Напомним некоторые факты.
Сигнал называется цифровым, если область значений последовательности ограничена конечным множеством действительных или комплексных чисел.
Обработка сигналов универсальными цифровыми вычислительными машинами или специализированными цифровыми процессорами осуществляется путём выполнения ряда вычислительных операций над последовательностями чисел. В настоящее время существует несколько алгоритмов, предназначенных для использования в области цифровой обработки сигналов. Здесь же немалую роль играет система остаточных классов, основанная на элементарной теории чисел.
Вообще, идею теории чисел для получения алгоритмов вычислений используют в 2-х наиболее важных направлениях обработки сигналов:
- в вычислении свёртки;
- в вычислении дискретного преобразования Фурье.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--