Дипломная работа: Метризуемость топологических пространств

Аксиома . Каждая из двух произвольных точек пространства имеет окрестность, не содержащую вторую точку.

Предложение. является - пространством тогда и только тогда, когда для любого множество замкнуто.

Доказательство.

Необходимость. Пусть . Так как является -пространством, то существует окрестность , не содержащая .

Рассмотрим

Докажем, что . Применим метод двойного включения:

· Очевидно, что по построению множества .

· .

Пусть отсюда для любого отличного от существует окрестность , значит , тогда .

Множество - открыто, как объединение открытых множеств.

Тогда множество - замкнуто, как дополнение открытого множества.

Достаточность. Рассмотрим . По условию замкнутые множества. Так как , то . Множество -открыто как дополнение замкнутого и не содержит . Аналогично доказывается существование окрестности точки , не содержащей точку

Что и требовалось доказать.

Аксиома ( аксиома Хаусдорфа). Любые две точки пространства имеют непересекающиеся окрестности.

Аксиома . Любая точка и не содержащее ее замкнутое множество имеют непересекающиеся окрестности.

Определение. Пространства, удовлетворяющие аксиомам () называются -пространствами (-пространства называют также хаусдорфовыми пространствами ).

Определение. Пространство называется нормальным или -пространством , если оно удовлетворяет аксиоме , и всякие его два непустые непересекающиеся замкнутые множества имеют непересекающиеся окрестности.

Определение. Система окрестностей называется определяющей системой окрестностей точки , если для любой окрестности точки найдется окрестность из этой системы, содержащаяся в .

Определение. Если точка топологического пространства имеет счетную определяющую систему окрестностей, то говорят, что в этой точке выполняется первая аксиома счетности . Если это верно для каждой точки пространства, то пространство называется пространством с первой аксиомой счетности.

Определение. Две метрики и на множестве называются эквивалентными , если они порождают на нем одну и ту же топологию.

Пример. На плоскости для точек и определим расстояние тремя различными способами:

1. ,

2. ,

3. .

· Введенные расстояния являются метриками. Проверим выполнимость аксиом метрики для введенных расстояний.

1. 1)

К-во Просмотров: 292
Бесплатно скачать Дипломная работа: Метризуемость топологических пространств