Дипломная работа: Метризуемость топологических пространств
Доказательство. Воспользуемся определением непрерывности: функция называется непрерывной в точке , если .
Из неравенства , где , получаем . Аналогично . Из полученных неравенств следует .
Для произвольного возьмем . Тогда из неравенства следует . Непрерывность доказана.
Лемма. – замкнутое множество в метрическом пространстве . Для любого расстояние от до множества положительно.
Доказательство.
Множество замкнуто, отсюда следует, что множество - открыто. Так как точка принадлежит открытому множеству , то существует такое, что . Так как , то для некоторого . Поэтому для любого . Следовательно, , что и требовалось доказать.
Свойство 2. Метризуемое пространство нормально.
Доказательство. По доказанному метризуемое пространство является
-пространством. Остается доказать, что любые непустые непересекающиеся замкнутые множества и имеют непересекающиеся окрестности.
Так как и множество замкнуто по условию, то для любого по лемме .
Обозначим и для произвольных и .
Множества и открыты как объединения открытых шаров в и содержат соответственно множества и .
Следовательно, - окрестность множества , - окрестность множества .
Докажем, что .
Предположим, что , то есть . Тогда из условия следует, что для некоторого . Отсюда .
Аналогично получаем для некоторого . Для определенности пусть . Тогда .
Получаем , для некоторой точки , что невозможно в силу определения расстояния от точки до множества.
Следовательно . Таким образом, является -пространством, а, значит, нормальным пространством. Теорема доказана.
Свойство 3. В метризуемом пространстве выполняется первая аксиома счетности.
Доказательство. Пусть - произвольное открытое множество, содержащее точку . Так как открытые шары образуют базу топологии метрического пространства, то содержится в вместе с некоторым открытым шаром, то есть для некоторых и . По утверждению 1 найдется такое , что .
Возьмем , для которого . Тогда . Таким образом открытые шары , образуют определяющую систему окрестностей точки . Очевидно, что множество этих окрестностей счетно. Что и требовалось доказать.
Определение. Множеством типа или просто - множеством пространства называется всякое множество , являющееся объединением счетного числа замкнутых (в ) множеств.
Определение. Множеством типа или просто - множеством пространства называется всякое множество , являющееся пересечением счетного числа открытых (в ) множеств.
Очевидно, что множества типа и являются взаимно дополнительными друг для друга.
Определение. Нормальное пространство, в котором всякое замкнутое множество является множеством типа , называется совершенно нормальным .
Утверждение 3. Нормальное пространство является совершенно нормальным тогда и только тогда, когда всякое открытое множество, принадлежащее этому пространству, является множеством типа .
Свойство 4. Метризуемое пространство совершенно нормально.
Доказательство. Пусть - непустое замкнутое множество в . Тогда для непрерывной функции (непрерывность ее установлена в утверждении 2). Обозначим , множества открыты в как прообразы открытых множеств при непрерывном отображении. Докажем, что .
Пусть , тогда . Так как для любого , то для любого . Отсюда .