Дипломная работа: Моделі відкритої мережі
б) Якщо на приладі немає заявок, те вступник позитивна заявка починає обслуговуватися;
в) Якщо на приладі заявка позитивна, те негативна заявка, що прийшла, вибиває заявку із приладу й позитивна заявка губиться.
г) Якщо в черзі заявок позитивних, те прихожа негативна заявка, витісняє останню (позитивну) заявку й у черзі стає заявка ( -ая позитивна й негативна заявка губиться).
Стан мережі описується випадковим процесом
,
де – число позитивних заявок у момент , відповідно в першому, другому, третьому вузлі. Відповідно до розділу 1 і з огляду на формулу (3.1) – марковський процес.
Таким чином, відповідно до визначення 1.3 і вищесказаному, побудована марковська модель відкритої мережі із трьома вузлами й різнотипними заявками.
3.1 Складання рівнянь трафіка
Розглянемо ізольований -й вузол ( ), уважаючи, що на нього надходить потік заявок інтенсивності . Граф переходів зобразиться в такий спосіб.
Тоді відповідно до малюнка 3.1.1, одержимо наступні співвідношення
, , (3.1.1)
де .
Відповідно до малюнка 3.1
, . (3.1.2)
Для марковської моделі мережі із трьома вузлами й різнотипними заявками рівняння трафіка мають такий вигляд:
,
,
,
,
,
.
З огляду на формулу (3.1.2) запишемо ще три рівняння
,
,
.
Таким чином, рівняння трафіка мають такий вигляд
. (3.1.3)
, (3.1.4)
, (3.1.5)