Дипломная работа: Моделирование динамических процессов в пневмоцилиндре

Р2 – сила полезного сопротивления

Р - результирующая всех сил, приложенных к поршню;

; (1.24)

; (1.25)

; (1.26)

. (1.27)

Рассмотрим обратный ход поршня. Уравнение его движения при обратном ходе, когда поршневая полость 2 соединяется с атмосферой имеет вид:

Р, (1.28)

Р = Р1 + Р2 + Рз + Ра (Р1 - Р2),


2. Разработка математической модели объекта

На основании дифференциальных уравнений, которые описывают поведение пневмоцилиндра в процессе работы, была составлена динамическая модель пневмоцилиндра. Далее выполняем моделирование (исследование) составленной модели. Нагружаем модель единичным ступенчатым воздействием, который воздействует на поршневую полость.

Таблица 1 Обозначения переменных, используемых в дин.модели

Описание

Обознач.

В схеме

Ед.

Давление в поршневой полости пневмоцилиндра

P1

P1

Па

Давление в поршневой полости пневмоцилиндра

P2

P2

Па

Начальная координата поршня

Х01

Х01

м

Начальный объем рабочей полости

К-во Просмотров: 402
Бесплатно скачать Дипломная работа: Моделирование динамических процессов в пневмоцилиндре