Дипломная работа: Мультипликативные полугруппы неотрицательных действительных чисел
Доказательство. Импликации и очевидны. Пусть , т.е. для некоторого . Очевидно, b – общий делитель а и b . Возьмем произвольный общий делитель с элементов а и b . Для него существуют такой элемент , что и . Таким образом, с делит b . Это и означает, что . Аналогично доказывается .
Следствие 1. .
Следствие 2. и .
Свойство 3. и .
Доказательство следует из коммутативности операции умножения и свойств делимости.
Свойство 4. .
Доказательство. Обозначим d 1 =НОД (НОД (a , b ), c ). Так как d 1 является общим делителем НОД (a , b )иc , то d 1 – общий делитель и для элементов a , b и c . Верно и обратно: любой общий делитель этих трех элементов является общим делителем для НОД (a , b )иc . Аналогичным свойством обладает и элемент d 2 =НОД (a , (НОД (b , c )). Тогда элементы d 1 и d 2 делят друг друга. По свойству антисимметричности делимости получаем d 1 =d 2 .
Свойство 5. .
Доказательство. Обозначим k 1 =НОК (НОК (a , b ), c ). Так как k 1 является общим кратным элементов НОК (a , b )иc , то k 1 – общее кратное и для элементов a , b и c . Верно и обратно: любое общее кратное этих трех элементов является общим кратным для НОК (a , b )иc . Аналогичным свойством обладает и элемент k 2 =НОК (НОК (a , b ), c ). Тогда элементы k 1 и k 2 делят друг друга. По свойству антисимметричности делимости получаем k 1 =k 2 .
Свойство 6. Если элементы а и b не взаимно просты, то а и b имеют общий делитель, не равный 1.
Доказательство. По условию НОД (a , b )= d ¹1. Тогда по определению d и есть не равный единице общий делитель а и b .
Свойство 7. = .
Доказательство. Обозначим d =НОД (a , b ). По свойству (6) делимости элемент с d делит любой общий делитель элементов ас и b с , следовательно, является их НОД. Свойство доказано.
Свойство 8. Если , то .
Доказательство. Из условия следует, что d делит любой общий делитель элементов а и b и . Тогда по свойству (6) делимости элемент делит любой общий делитель элементов , следовательно, является их НОД. Свойство доказано.
Свойство 9. Если и , то .
Доказательство. Пусть НОД и НОД (а,b) = 1, тогда среди делителей элементов b и с нет делителей элемента а . Следовательно, и среди делителей элемента bc нет делителей элемента а , что и означает, что .
Свойство 10. Если , то для любых N .
Доказательство. Докажем, что методом математической индукции. Пусть m = 1, тогда по условию, т.е. база индукции верна. Предположим, что для всех k < m . Покажем, что при k = m. по свойству (10) для с = b . Отсюда, для всех N . по свойству 3 делимости. Аналогичными рассуждениями получаем для любого N . Следовательно, .
Свойство 11. Если , то для любого .
Доказательство. Пусть , тогда а = sd и c = td для некоторых s,tS таких, что НОД(s,t) = 1. Поскольку , то НОД(s,b) = 1 и по свойству 9 НОД(s,tb) = 1. Следовательно, . Свойство доказано.
Свойство 12. Существование НОК (a , b ) влечет существование НОД (a , b ) и равенство НОД (a , b ) НОК (a , b ) = ab .
Доказательство. Если хотя бы одно из чисел или равно 0, то и равенство справедливо. Пусть элементы и ненулевые и . Поскольку - общее кратное чисел и , то для некоторого . Так как и , то - общий делитель и . Докажем, что делится на любой общий делитель элементов и . Пусть - произвольный общий делитель чисел и , т.е. и для некоторых . Поскольку - общее кратное элементов и , то . Так как , то для некоторого . Отсюда . Следовательно, , и, значит, НОД ().
Предложение 1 . Полугруппа является НОК-полугруппой тогда и только тогда, когда есть НОД-полугруппа.
Доказательство . По свойству 12 достаточно доказать, что любая НОД-полугруппа является НОК-полугруппой. Пусть есть НОД-полугруппа. Возьмем произвольные . Если хотя бы одно из чисел равно 0, то . Рассмотрим случай и . Обозначим . Тогда и для некоторых . Поскольку по свойству 7, то . Положим . Число является общим кратным элементов и . Осталось показать, что на делится любое общее кратное и . Возьмем произвольное общее кратное элементов и , т. е. для некоторых . Тогда , т.е. (поскольку ). По свойству 11 имеем , значит, для некоторого . Поэтому , т.е. .
§ 2. Строение числовых НОД и НОК полугрупп
Далее будем рассматривать множество всех неотрицательных действительных чисел R + и мультипликативную полугруппуS R + , содержащую 0 и 1, с топологией, индуцированной топологией числовой прямой.
Лемма 1 . Если S связно, то S = или S = R + .
Доказательство. Пусть S связное множество в R + . Тогда S является промежутком. Поскольку и , то . Если в S нет элемента c > 1, то . В противном случае числа (N ) принимают сколь угодно большие значения. Поскольку S – промежуток, то для всех N . Отсюда R + .
Лемма 2. Если несвязно, то .