Дипломная работа: Операторы проектирования

c) (ax,y)=a(x,y), "x, yÎH, "aÎC;

d) (x,x)³0, "xÎH;

e) (x,x)=0 Û x=0, "xÎH;

Если (x,y) = 0, то говорят, что x ортогонален y (обозначение x^y).

Если Е подмножество Н, F подмножество H, то Е^F обозначает, что (x,y) = 0 для любых x из E и любых y из F.

Через Е обозначаются все y из H, ортогональные каждому из векторов x из E.

Нормой в пространстве Н называется число .

Если полученное нормированное пространство является полным, то оно называется гильбертовым пространством.

Примеры гильбертовых пространств.

1) l - комплексное гильбертово пространство, в котором скалярное произведение определяется формулой (x, y) = ;

2) L(0,1) - гильбертово пространство, в котором скалярное произведение определено формулой

(f, g) = dx.

Теорема3:

М – замкнутое подпространство гильбертова пространства Н, следовательно H можно представить в виде прямой суммы M и М (Н=МÅМ, М - ортогональное дополнение к М).

Доказательство:

Если Е подмножество Н, то из линейности скалярного произведения (x,y) по x следует, что Е является подпространством в Н. Допустим, что элементы g принадлежат Е и сходятся к g. Тогда для любого f из E

(g, f) = = 0, и потому g тоже входит в Е, значит Е - замкнутое подпространство.

(1) Если х принадлежит М и х принадлежит М, то (х, х) = 0, а это будет тогда и только тогда, когда х = 0, следовательно МÇМ={0}.

(2) Пусть х принадлежит Н.

Рассмотрим множество х-М = {х-х: хÎМ}, причем х такой, что он минимизирует величину . Пусть х = х-х, следовательно, £ для любых y из М, значит, х принадлежит М, поэтому для любого х из Н х можно представить в виде х = х, где х из М и х из М.

Из (1) и (2) следует, что Н представимо в виде прямой суммы М и М Н=МÅМ, следовательно любое подмножество в гильбертовом пространстве дополняемо.

Примеры дополняемых подпространств в гильбертовом пространстве.

1) в l рассмотрим элементы x = (x, …,x, …), у которых x= 0 при четных n и x произвольные при n нечетных. Эти элементы образуют в l замкнутое подпространство. Назовем его X.

Рассмотрим также элементы y = (y, …, y, …), у которых y произвольные при четных n, и y= 0 при нечетных n. Эти элементы образуют замкнутое подпространство в l , и при этом это подпространство является ортогональным дополнением к X, так как их скалярное произведение равно 0. Следовательно, по Т3. X дополняемо в H с помощью X.

2) L(0,1).

Пусть X – подпространство L(0,1), состоящее из тех функций L(0,1), которые обращаются в 0 на интервале (0, а].

Пусть Y – подпространство L(0,1), состоящее из тех функций L(0,1), которые в ноль не обращаются на интервале [a, 1).

Тогда Y является ортогональным дополнением X, так как их скалярное произведение равно 0, а значит X дополняемо в L(0,1) с помощью Y.

Часть III . Задача о дополняемости.

К-во Просмотров: 251
Бесплатно скачать Дипломная работа: Операторы проектирования