Дипломная работа: Положительные и ограниченные полукольца 2
(4)
Все аксиомы полукольца доказаны, а значит - коммутативное полукольцо и его элементы – элементы ограниченного полукольца, значит полукольцо – ограничено.
IX . Если в положительном полукольце S выполняется равенство
,
то S – аддитивно идемпотентно.
Доказательство.
Рассмотрим t >1
Рассмотрим t= 1,
…
т.к. полукольцо положительно, то в обеих частях обратимые элементы, домножим на обратный и получим 1+1=1, умножим обе части на u, получим u+u=u, что и означает аддитивную идемпотентность.
X . В положительном полукольце S справедливо следующее тождество:
Доказательство.
Домножим на обратный к :
Получим:
Что и требовалось доказать.
Библиографический список
1. Чермных, В.В. Полукольца [Текст] / В.В. Чермных – Киров: Изд-во ВГПУ, 1997. – ст.7 – 87.
2. Вечтомов, Е.М. Введение в полукольца [Текст] / Е.М. Вечтомов – Киров: Издательство ВГ ПУ, 2000. – ст.5 - 30.