Дипломная работа: Произведения конечных групп близких к нильпотентным

1.1.14 О п р е д е л е н и е. Пусть – некоторый класс групп. Подгруппа группы называется -проектором, если выполнены условия: и из того, что , а , всегда следует

1.1.15 О п р е д е л е н и е. Подгруппу группы назовем -картеровой подгруппой, если -нильпотентна, и содержит некоторую -холловскую подгруппу группы .

1.1.16 О п р е д е л е н и е. Подгруппу группы назовем -гашюцевой подгруппой, если -сверхразрешима, содержит некоторую -холловскую подгруппу группы и для индекс есть составное число.

1.1.17 О п р е д е л е н и е. Пересечение всех нормальных подгрупп группы факторгруппы по которым принадлежат обозначают через и называют -корадикалом группы

1.1.18 О п р е д е л е н и е. -класс Шунка – класс Шунка, для которого из условия , всегда следует .


Факторизуемые подгруппы произведений конечных групп

В настоящем разделе излагается подробно теория факторизуемых подгрупп теории конечных групп, взятая из [32] c точными ссылками на работы авторов приведенных результатов.

1.2.1 Л е м м а. Пусть – некоторая группа, и – ее подгруппы. Подгруппы и перестановочны тогда и только тогда, когда произведение является подгруппой группы .

(Говорят, что непустые множества и элементов группы перестановочны, если .)

Д о к а з а т е л ь с т в о. Необходимость. Пусть подгруппы и перестановочны. Тогда, очевидно

(Если – непустое множество элементов некоторой группы, то, как обычно, .)

С учетом последних соотношений множество является подгруппой группы .

Достаточность. Пусть подмножество является подгруппой. Тогда, очевидно, т.е. подгруппы и перестановочны.

Лемма доказана.

1.2.2 О п р е д е л е н и е. Пусть – группа, факторизуемая двумя подгруппами и . Если , то будем говорить, что подгруппа факторизуема относительно разложения

1.2.3 Л е м м а (Виландт[4]). Пусть – группа, факторизуемая двумя подгруппами и ; – некоторая подгруппа группы и – нормализатор подгруппы в . Подгруппа факторизуема относительно разложения если выполняется следующее условие:

(*) всякий раз, когда для элементов и

элементы и содержатся в .

Д о к а з а т е л ь с т в о. Пусть выполняется условие (*), и – произвольные элементы соответственно из и , для которых . Тогда выполняется соотношение (1) и, следовательно, и Поэтому ввиду произвольности элементов и и, значит, . Лемма доказана.

1.2.4 Л е м м а. Пусть – группа, факторизуемая двумя подгруппами и ; – подгруппа, порожденная некоторыми инвариантными подгруппами соответственно групп и и – нормализатор подгруппы в . Подгруппа факторизуема относительно разложения тогда и только тогда, когда выполняется условие (*) из формулировки леммы 1.2.3.

Д о к а з а т е л ь с т в о. Если условие (*) выполняется, то по лемме 1.2.3 подгруппа факторизуема относительно разложения Пусть подгруппа факторизуема относительно разложения и – какие-нибудь элементы соответственно из подгрупп и , такие, что выполняется соотношение (1). Поскольку то для некоторых элементов и Отсюда получаем

Очевидно, Поэтому с учетом соотношений (2) и Лемма доказана.

1.2.5 Л е м м а. Пусть – группа, – ее подгруппа и – элемент группы некоторая натуральная степень которого содержится в . Тогда подгруппа не является истинной подгруппой группы .

(Подгруппа, отличная от самой группы, называется ее истинной подгруппой.)

Д о к а з а т е л ь с т в о. Действительно, если бы была истинной подгруппой группы , то она, как легко убедиться, была бы и истинной подгруппой группы при любом натуральном , в том числе при , для которого , что невозможно. Лемма доказана.

К-во Просмотров: 222
Бесплатно скачать Дипломная работа: Произведения конечных групп близких к нильпотентным