Дипломная работа: Разработка теории радиогеохимического эффекта
Подставив (2.14) и (2.15) в (2.12) получим
(2.16) |
Если в (2.16) то получим уравнение диффузии (II Закон Фика):
(2.17) |
2.3. Уравнение конвективной диффузии
Пусть имеется раствор с плотностью растворителя и плотностью растворенного вещества –, тогда плотность раствора запишется в виде
(2.18) |
Запишем уравнение неразрывности для растворителя:
(2.19) |
Диффузию не учитываем, потому что в жидкостях коэффициент диффузии мал.
Будем считать, что растворитель является несжимаемым, т.е. не зависит от пространственных координат и
(2.20) |
Тогда из выражения (2.19), получим
(2.21) |
Запишем уравнение неразрывности для раствора:
(2.22) |
В (2.22) подставим (2.18), получим
Учитывая (2.20), (2.21) и независимость от пространственных координат, получим
(2.23) |
Опустим штрих, предполагая в дальнейшем – плотность примеси.
(2.24) |
Поясним в (2.24) значение каждого слагаемое:
Первое слагаемое описывает изменение массового содержания в рассматриваемой точке;
Второе слагаемое отвечает за конвекцию;
Третье слагаемое отвечает за диффузию.
Физический смысл уравнения (2.24) заключается в следующем: изменение концентрации, со временем, в рассматриваемой точке происходит за счет конвекции и диффузии.
На практике в (2.24) слагаемым можно пренебречь, в силу его малости.
2.4. Метод характеристик
Пусть движение несущей жидкости происходит вдоль оси , тогда уравнение без диффузионной конвекции запишется
. | (1) |
Одномерное уравнение без диффузионной конвекции (или конвекционное уравнение).
Задача Коши для уравнения (1).
Требуется найти функцию , где и удовлетворяющую условиям:
(2) |
Получим решение задачи методом характеристик.
Метод характеристик заключается в переходе от эйлеровых переменных и к лагранжевым. Связь производных в эйлеровых и лагранжевых координатах записывается в виде:
. | (3) |
Уравнение (1) таким образом можно записать как систему двух уравнений:
(4) (5) |
где уравнение (4) – уравнение для характеристик.
Из (5) следует, что , где некоторая постоянная. Но т.к. , то .
Из (4) получаем
. | (6) |