Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр
Теорема 1.4. [2] Конгруэнции любой алгебры многообразия попарно перестановочны тогда и только тогда, когда существует термальная операция
, что во всех алгебрах из
справедливы тождества
Определение 1.5. [3] Пусть и
- факторы алгебры
. Тогда они называются:
1) перспективными, если либо и
, либо
и
;
2) проективными, если в найдутся такие факторы
, что для любого
факторы
и
перспективны.
Теорема 1.5. [4] Между факторами произвольных двух главных рядов алгебры , принадлежащей мальцевскому многообразию, можно установить такое взаимно однозначное соответствие, при котором соответствующие факторы проективны и централизаторы в
равны.
Теорема 1.6. [2] (Лемма Цорна). Если верхний конус любой цепи частично упорядоченного множества не пуст, то
содержит максимальные элементы.
2. Свойство централизаторов конгруэнций универсальных алгебр
Под термином ``алгебра'' в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие . Используются определения и обозначения из работы [1]. Дополнительно отметим, что конгруэнции произвольной алгебры обозначаются греческими буквами. Если
- конгруэнция на алгебре
, то
- класс эквивалентности алгебры
по конгруэнции
,
- факторалгебра алгебры
по конгруэнции
. Если
и
- конгруэнции на алгебре
,
, то конгруэнцию
на алгебре
назовем фактором на
. Очевидно, что
тогда и только тогда, когда
.
или
и
или
- соответственно наименьший и наибольший элементы решетки конгруэнций алгебры
.
Будем пользоваться следующим определением централизуемости конгруэнций, эквивалентность которого определению Смита [5] доказана в работе [6].
Определение 2.1. Пусть и
- конгруэнции на алгебре
. Тогда
централизует
(записывается:
), если на
существует такая конгруэнция
, что:
1) из всегда следует
;
2) для любого элемента всегда выполняется
3) если , то
.
Следующие свойства централизуемости, полученные Смитом [5], сформулируем в виде леммы.
Лемма 2.1. Пусть . Тогда:
существует единственная конгруэнция
, удовлетворяющая определению 2.1;
;
если
, то
.
Из леммы 2.1 и леммы Цорна следует, что для произвольной конгруэнции на алгебре
существует такая единственная наибольшая конгруэнция
, что
. Эту конгруэнцию
будем называть централизатором конгруэнции
в
и обозначать
.
Лемма 2.2. Пусть - конгруэнции на алгебре
,
,
,
. Тогда справедливы следующие утверждения:
;
, где
;
если,
, либо
, либо
, то всегда
;
из
всегда следует
.