Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр

Теорема 1.4. [2] Конгруэнции любой алгебры многообразия попарно перестановочны тогда и только тогда, когда существует термальная операция , что во всех алгебрах из справедливы тождества

Определение 1.5. [3] Пусть и - факторы алгебры . Тогда они называются:

1) перспективными, если либо и , либо и ;

2) проективными, если в найдутся такие факторы , что для любого факторы и перспективны.

Теорема 1.5. [4] Между факторами произвольных двух главных рядов алгебры , принадлежащей мальцевскому многообразию, можно установить такое взаимно однозначное соответствие, при котором соответствующие факторы проективны и централизаторы в равны.

Теорема 1.6. [2] (Лемма Цорна). Если верхний конус любой цепи частично упорядоченного множества не пуст, то содержит максимальные элементы.

2. Свойство централизаторов конгруэнций универсальных алгебр

Под термином ``алгебра'' в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие . Используются определения и обозначения из работы [1]. Дополнительно отметим, что конгруэнции произвольной алгебры обозначаются греческими буквами. Если - конгруэнция на алгебре , то - класс эквивалентности алгебры по конгруэнции , - факторалгебра алгебры по конгруэнции . Если и - конгруэнции на алгебре , , то конгруэнцию на алгебре назовем фактором на . Очевидно, что тогда и только тогда, когда . или и или - соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .

Будем пользоваться следующим определением централизуемости конгруэнций, эквивалентность которого определению Смита [5] доказана в работе [6].

Определение 2.1. Пусть и - конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:

1) из всегда следует ;

2) для любого элемента всегда выполняется

3) если , то .

Следующие свойства централизуемости, полученные Смитом [5], сформулируем в виде леммы.

Лемма 2.1. Пусть . Тогда:

существует единственная конгруэнция , удовлетворяющая определению 2.1;

;

если , то .

Из леммы 2.1 и леммы Цорна следует, что для произвольной конгруэнции на алгебре существует такая единственная наибольшая конгруэнция , что . Эту конгруэнцию будем называть централизатором конгруэнции в и обозначать .

Лемма 2.2. Пусть - конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

;

, где ;

если, , либо

, либо

, то всегда ;

из всегда следует .

К-во Просмотров: 249
Бесплатно скачать Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр