Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр

Напомним, что факторы и на алгебре называются перспективными, если либо и , либо и .

Докажем основные свойства централизаторов конгруэнций.

Теорема 2.1. Пусть - конгруэнции на алгебре . Тогда:

если , то ;

если , то ;

;

если , и факторы , перспективны, то

если - конгруэнции на и , то

Доказательство. 1). Так как конгруэнция централизует любую конгруэнцию и , то .

2). Из п.1) леммы 2.2 следует, что , а в силу леммы 2.4 получаем, что .

Пусть - изоморфизм . Обозначим

По лемме 2.5 , а по определению


Следовательно, .

3). Очевидно, достаточно показать, что для любых двух конгруэнций и на алгебре имеет место равенство:

Покажем вначале, что

Обозначим . Тогда, согласно определения 2.1, на алгебре существует такая конгруэнция , что выполняются следующие свойства:

а) если , то ;

б) для любого элемента , ;

в) если и , то .

Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда и , . Покажем, что - конгруэнция на . Пусть , . Тогда и , . Так как - конгруэнция, то для любой -арной операции имеем:


К-во Просмотров: 247
Бесплатно скачать Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр