Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр
2). - конгруэнция на
, удовлетворяющая определению 2.1. Значит,
.
3). Пусть . Тогда
Применим к последним трем соотношениям мальцевский оператор такой, что
, для любых элементов
. Тогда получим
Аналогичным образом доказываются остальные случаи п.3).
4). Пусть . Тогда справедливы следующие соотношения:
Следовательно, , где
- мальцевский оператор. Тогда
, т.е.
. Так как
и
, то
. Таким образом
. Лемма доказана.
В дальнейшем мы будем часто ссылаться на следующий хорошо известный факт (доказательство см., например [6]).
Лемма 2.3. Любая подалгебра алгебры , содержащая конгруэнцию
, является конгруэнцией на
.
Доказательство следующего результата работы [5] содержит пробел (следствие 224 [5] неверно, см. [7]), поэтому докажем его.
Лемма 2.4. Пусть . Тогда для любой конгруэнции
на
Доказательство. Обозначим и определим на алгебре
бинарное отношение
следующим образом:
тогда и только тогда, когда , где
,
. Используя лемму 2.3, нетрудно показать, что
- конгруэнция на алгебре
, причем
.
Пусть , т.е.
,
. Тогда
и, значит,
.
Пусть, наконец, имеет место и
. Тогда справедливы следующие соотношения:
Применяя мальцевский оператор к этим трем соотношениям, получаем:
. Из леммы 2.2 следует, что
. Так как
и
, то
. Значит,
. Но
, следовательно,
. Итак,
и удовлетворяет определению 2.1. Лемма доказана.
Лемма 2.5. Пусть и
- конгруэнции на алгебре
,
и
- изоморфизм, определенный на
. Тогда для любого элемента
отображение
определяет изоморфизм алгебры
на алгебру
, при котором
. В частности,
.
Доказательство. Очевидно, что - изоморфизм алгебры
на алгебру
, при котором конгруэнции
,
изоморфны соответственно конгруэнциям
и
. Так как
, то определена конгруэнция
, удовлетворяющая определению 2.1. Изоморфизм
алгебры
на алгебру
индуцирует в свою очередь изоморфизм
алгебры
на алгебру
такой, что
для любых элементов
и
, принадлежащих
. Но тогда легко проверить, что
- конгруэнция на алгебре
изоморфная конгруэнции
. Это и означает, что
. Лемма доказана.