Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр

Доказательство :

Определим бинарное отношение на следующим образом тогда и только тогда, когда найдутся такие элементы и ,что справедливы равенства

Очевидно,что -отношенме эквивалентности на , удовлетворяющее условиям 1)-3) определения 2.1.,замкнутость которого относительно групповых операций доказана в примере [8]

Пусть теперь --арная операция и Тогда

и


для любых Следовательно,

Подставляя в правую часть последнего равенства значения и учитывая,что после раскрытия скобок члены,одновременно содержащие элементы и ,равны нулю , получаем в правой части равенства выражение

Так как -идеал,то

Итак,

тогда .

Теорема 3.5 Пусть и -идеалы мультикольца , , -конгруэнции,определенные в теореме 3.4. и .Тогда .

Доказательство : Пусть -конгруэнции мультикольца и . Обозначим смежные классы по и ,являющиеся идеалами мультикольца, соответственно и . Возьмем произвольные элементы , , . Тогда

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • К-во Просмотров: 250
    Бесплатно скачать Дипломная работа: Свойство централизаторов конгруэнций универсальных алгебр