Дипломная работа: Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si
Обычно выделяют три класса магнитных аморфных сплавов [2]: это сплавы переходных металлов с металлоидами (ПМ-М), редкоземельных металлов с переходными (РЗМ-ПМ) и переходных металлов с цирконием и гафнием.
Сплавы типа ПМ-М обычно содержат около 80 % (ат.) Fe, Coили Niи в качестве остального - такие элементы, как B, C, Si, Pили Al. Производятся они в основном путем быстрого охлаждения расплава, хотя не исключается использование и других способов - таких, как напыление, электроосаждение или химическое осаждение. Входящие с состав сплавов металлоиды необходимы для того, чтобы понизить температуру плавления и обеспечить достаточно быстрое охлаждение расплава ниже его температуры стеклования, чтобы в результате образовалась аморфная фаза. Стабилизируя аморфное состояние, те же металлоиды радикальным образом изменяют магнитные, механические и электрические свойства сплава в результате перехода части их электронов в d-зону сплава [1].
Установлено, что вследствие магнитных свойств аморфные сплавы являются перспективными материалами для изготовления сердечников больших трансформаторов, а необычное сочетание их магнитных и механических свойств может быть использовано в головках магнитных записывающих устройств, в некоторых типах магнитопроводов в электронике, а также в разнообразных датчиках [2].
Достаточно перспективными электродными материалами являются интерметаллические и металлоподобные соединения, многие из которых обладают уникально высокой коррозионной стойкостью и низким перенапряжением водорода. Были изучены основные закономерности анодного растворения и катодного поведения силицидов металлов подгруппы железа [3] в кислых и щелочных электролитах и детально изучено влияние внешних и внутренних факторов на механизм и кинетику анодного растворения. Установлено, что стойкость силицидов металлов подгруппы железа в кислых электролитах в области потенциалов активного растворения, активно-пассивного перехода и в пассивной области существенно выше, нежели соответствующих чистых металлов и она зависит от соотношения количества "металл: кремний" в силицидах.
Полученные результаты дают основание полагать, что низшие силициды подгруппы железа являются перспективными материалами для разработки коррозионностойких катодов для электрохимического получения высокочистого водорода. Наряду с невысоким перенапряжением выделения водорода, они обладают высокой коррозионной стойкостью, хорошими механическими характеристиками.
В сущности, проблемой является ответ на вопрос о том, каким образом аморфность атомной структуры влияет на все разнообразие свойств. Одним из благоприятных моментов при исследовании аморфных сплавов является возможность непрерывного изменения их химического состава в рамках однофазного состояния. Это позволяет получить гомогенные сплавы и исследовать концентрационную и температурную зависимость свойств, не опасаясь сложностей, связанных со структурными превращениями [1].
Свойства силицидов никеля [3].
Теплопроводность λ силицидов никеля (Ni2 Si, NiSi) сравнительно невелика и с повышением температуры практически не меняется. Для Ni3 Si, Ni3 Si2 , NiSi2 наблюдается более сложный характер изменения теплопроводности. Для некоторых силицидов эта величина была установлена при 40 0 С:
λэ (Ni3 Si) =7,7 Вт/ (м*град),
λэ (NiSi2 ) =6,5 Вт/ (м*град).
В широких пределах (20-1000 0 С) измерены электрофизические свойства силицидов никеля. Для Ni2 Siи NiSiустановлен металлический тип проводимости во всем исследованном интервале температур. Судя по температурной зависимости, основными носителями зарядов являются электроны. Для Ni3 Si, Ni3 Si2 , NiSi2 линейная зависимость электросопротивления наблюдается от 20 до 800, 700 и 5800 С соответственно. Дальнейшее повышение температуры приводит к падению электросопротивления и повышению λ.
По характеру температурной зависимости можно предположить, что у NiSi электроперенос осуществляется отрицательными зарядами, а у Ni3 Si2 - смешанная проводимость. У NiSi2 для переноса электричества служат дырки в интервале 20-8000 С, а затем положительные носители тока заменяются отрицательными.
Силицид Ni2 Si реагирует с фтором при комнатной температуре с воспламенением, с хлором - при 600-7000 С. Газообразные HF, HCl, HBr и HI разлагают его с образованием галогенидов никеля и кремния. Пары воды разлагают Ni2 Si в тех же условиях. Плавиковая кислота растворяет его очень легко, а остальные кислоты - труднее. В смеси HCl и HNO3 силицид Ni2 Si растворяется полностью. Водные растворы щелочей не взаимодействуют с ним, расплавленные щелочи разлагают с образованием растворимых силикатов щелочей и осадка окислов никеля, аналогично действуют на него смеси H2 CO3 и KNO3 , но при более низких температурах.
Высший силицид никеля NISi2 полностью разлагается в смеси концентрированной HNO3 и HF. Некоторые минеральные кислоты (H2 SO4 , H3 PO4 ) при одночасовом кипячении растворяют NISi2 незначительно. Прибавление к серной кислоте окислителей (перекись водорода, надсернокислый аммоний) не увеличивает скорость разложения. Органические кислоты, растворы окислителей и комплексообразователей не разлагают силицид, растворы щелочей различной концентрации разлагают его незначительно [3].
Сведения о термическом расширении силицидов никеля весьма немногочисленны. Первая информация по этому вопросу была получена Нешпором и Резниченко, выполнившим дилатометрическое исследование Ni3 Si и Ni2 Si в области температур от 20 до 10700 С [3]. При этом авторы установили, что коэффициенты термического расширения силицидов меняются с ростом температуры как показано в таблице 1.1.:
Таблица 1.1.
Коэффициенты термического расширения силицидов
Силицид | Интервал температур, 0 С | α 106 град-1 |
Ni3 Si |
20-370 370-770 770-1070 |
9,0 11,5 14,85 |
Ni2 Si |
20-870 870-1070 |
16,5 19,0 |
1.2 Диаграмма состояния Ni - Si. Фазовые превращения в системе Ni-Si
На рис.1.1 приведена фазовая диаграмма состояния Ni-Si [4].
В системе определены следующие фазы: β1 , β3 , γ, δ, θ, έ, NiSi и NiSi2 . Из них три фазы γ, θ и NiSi плавятся конгруэнтно при 1242, 1306 и 992 0 С соответственно. Фазы β3 , δ и βNiSi2 образуются по перитектическим реакциям при 1170, 1255 и 993 0 С соответственно. В твердом состоянии по перитектоидным реакциям образуются фазы β1 (1035 0 С) и έ (845 0 С). Три фазы имеют высоко - и низкотемпературные модификации: β3 ↔ β2 (1115 0 С), έ↔ε (830 0 С) и βNiSi2 ↔αNiSi2 (981 0 С). Максимальная растворимость Si в Ni достигает 15,8 % (ат.) при 1143 0 С (эвтектическая температура). Кристаллическая структура соединений приведена в табл.1.2 [4]