Дипломная работа: Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si
Кристаллическая структура соединений системы Ni-Si
Соединение | Прототип | Параметры решетки, нм | ||
a | b | c | ||
β (Ni3 Si) | AuCu3 | 0,350 | ─ | ─ |
β2 *1 | (GePt3 ?) | 0,697 | 0,625 | 0,507 |
β3 *2 | (GePt3 ?) | 0,704 | 0,626 | 0,508 |
δ (Ni2 Si) | Co2 Si | 0,706 | 0,499 | 0,372 |
θ*3 | ─ | 0,3805 | ─ | 0,489 |
ε (Ni3 Si2 ) *4 | ─ | 1,2229 | 1,0805 | 0,6924 |
NiSi | MnP | 0,562 | 0,518 | 0,334 |
αNiSi2 | CaF2 | 0,546 | ─ | ─ |
*1 β=48,74о *2 β=48,84о *4 Ромбическая сингония |
Рис.1.1 Диаграмма состояния системы Ni - Si.
1.3 Термодинамическое моделирование свойств твердых металлических растворов. Обобщенная теория "регулярных" растворов
Регулярный раствор образуется из компонентов с выделением или поглощением тепла, а энтропия смешения его такая же, как и в совершенном растворе. Проблема аналитического представления концентрационной и температурной зависимости термодинамических свойств сводится к поиску соответствующего выражения для избыточной энергии Гиббса GE [5]. Обычно в качестве нулевого приближения к теории реальных растворов применяется модель идеального раствора, где GE =0. В настоящей модели за нулевое приближение принята теория регулярных растворов.
Понятие "регулярный раствор" включает в себя как частные случаи понятия "идеальный" и "предельно разбавленный" раствор, а закон граничной регулярности, согласно которому любой раствор можно считать регулярным до определенного предела, справедлив для более широкого диапазона концентраций, чем законы Рауля и Генри [5].
Для регулярного раствора:
, (1.1)
где xi и xj - мольные доли компонентов,
Qij - энергия взаимообмена (смешения).
В рамках модели строго регулярного раствора энергии взаимообмена являются константами. В реальных системах энергии взаимообмена (как эмпирические параметры модели) зависят от состава и температуры.
Для субрегулярных растворов:
; (1.2)
Для квазирегулярных растворов:
; (1.3)
где: и - соответственно теплота и избыточная энтропия смешения компонентов. Выражения (1.2) и (1.3), очевидно, можно рассматривать как частные случаи неизвестной функции для концентрационной и температурной зависимостей энергии смешения компонентов, получаемой путем разложения и в ряд Тейлора. Если ограничиться несколькими первыми членами ряда:
; (1.4)
то получится представление функции полиномом. В свою очередь, каждый из параметров , , ,…, может зависеть от температуры:
; (1.5)
Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов - той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.
Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы. Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:
; (1.6)
где и - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;
- параметр, учитывающий отклонение от "регулярности".
Умножив части уравнения (1.6) на общее число молей компонентов в растворе, получим избыточную энергию Гиббса произвольного количества фазы. Откуда:
(1.7)
Активности компонентов двойной системы: