Дипломная работа: Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si

Кристаллическая структура соединений системы Ni-Si

Соединение Прототип Параметры решетки, нм
a b c
β (Ni3 Si) AuCu3 0,350
β2 *1 (GePt3 ?) 0,697 0,625 0,507
β3 *2 (GePt3 ?) 0,704 0,626 0,508
δ (Ni2 Si) Co2 Si 0,706 0,499 0,372
θ*3 0,3805 0,489
ε (Ni3 Si2 ) *4 1,2229 1,0805 0,6924
NiSi MnP 0,562 0,518 0,334
αNiSi2 CaF2 0,546

*1 β=48,74о

*2 β=48,84о

*4 Ромбическая сингония


Рис.1.1 Диаграмма состояния системы Ni - Si.

1.3 Термодинамическое моделирование свойств твердых металлических растворов. Обобщенная теория "регулярных" растворов

Регулярный раствор образуется из компонентов с выделением или поглощением тепла, а энтропия смешения его такая же, как и в совершенном растворе. Проблема аналитического представления концентрационной и температурной зависимости термодинамических свойств сводится к поиску соответствующего выражения для избыточной энергии Гиббса GE [5]. Обычно в качестве нулевого приближения к теории реальных растворов применяется модель идеального раствора, где GE =0. В настоящей модели за нулевое приближение принята теория регулярных растворов.

Понятие "регулярный раствор" включает в себя как частные случаи понятия "идеальный" и "предельно разбавленный" раствор, а закон граничной регулярности, согласно которому любой раствор можно считать регулярным до определенного предела, справедлив для более широкого диапазона концентраций, чем законы Рауля и Генри [5].

Для регулярного раствора:

, (1.1)

где xi и xj - мольные доли компонентов,

Qij - энергия взаимообмена (смешения).

В рамках модели строго регулярного раствора энергии взаимообмена являются константами. В реальных системах энергии взаимообмена (как эмпирические параметры модели) зависят от состава и температуры.

Для субрегулярных растворов:

; (1.2)

Для квазирегулярных растворов:

; (1.3)

где: и - соответственно теплота и избыточная энтропия смешения компонентов. Выражения (1.2) и (1.3), очевидно, можно рассматривать как частные случаи неизвестной функции для концентрационной и температурной зависимостей энергии смешения компонентов, получаемой путем разложения и в ряд Тейлора. Если ограничиться несколькими первыми членами ряда:

; (1.4)

то получится представление функции полиномом. В свою очередь, каждый из параметров , , ,…, может зависеть от температуры:

; (1.5)

Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов - той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.

Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы. Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:

; (1.6)

где и - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;

- параметр, учитывающий отклонение от "регулярности".

Умножив части уравнения (1.6) на общее число молей компонентов в растворе, получим избыточную энергию Гиббса произвольного количества фазы. Откуда:

(1.7)

Активности компонентов двойной системы:

К-во Просмотров: 332
Бесплатно скачать Дипломная работа: Термодинамика химической и электрохимической устойчивости сплавов системы Ni-Si