Дипломная работа: Устойчивость по Ляпунову
Таким образом, будет определенно отрицательной или знакоотрицательной, если этим же свойством обладает форма
Как известно, критерий Сильвестра легко переносится на случай квадратичных форм с переменными коэффициентами, и поэтому этот критерий с успехом может быть использован.
В качестве примера построим функцию Ляпунова для системы уравнений переходного процесса синхронного двигателя
Здесь ,
--- постоянные,
--- возмущение рабочего угла,
--- возмущение силы тока, возникающее в результате наброса нагрузки на двигатель.
В данном случае получаем
а в качестве матрицы берем единичную матрицу. Таким образом, получим
Построенная функция Ляпунова позволяет оценить область притяжения положения равновесия, что дает возможность быстро оценить допустимую предельную нагрузку на синхронный двигатель.
Предложенный метод в линейном случае дает необходимые и достаточные условия устойчивости, если найти подходящие выражения для . Это следует из того, что всякая определенно положительная квадратичная форма линейным преобразованием может быть приведена к каноническому виду, т. е. к сумме квадратов переменных. Трудность этого метода состоит в подборе
и матрицы
.
Метод Красовского
Исследуется система уравнений
Функция Ляпунова строится в виде , где симметричная матрица
подбирается так, чтобы ее собственные числа были положительны и чтобы симметризованная матрица
удовлетворяла критерию отрицательности Сильвестра. Имеем в силу системы
Таким образом, получим и
.
В качестве примера рассмотрим уравнение
эквивалентное системе
Функцию Ляпунова выбираем в виде
Легко видеть, что
Очевидно, следует принять и
, тогда будем иметь