Дипломная работа: Вплив структури аліфатичних карбонових кислот та третинних амінів на каталітичний ацидоліз епіхлоргідрину

15.83

2.18

7.29

11.38

(Bu)4 N+ CH3 COO

0.0120

0.0564

0.0998

15.81

15.79

15.78

2.27

6.83

11.30

Як видно з експериментальних даних, досліджувані солі прискорюють реакцію прямопропорційно їх концентрації у реакційній масі [9].

При екстраполюванні експериментальних значень спостережених констант швидкостей до нульової концентрації каталізатору для всіх досліджуваних солей одержано одне і те ж значення, яке відповідає константі швидкості некаталітичної реакції, що узгоджується з даними [9] про паралельне протікання двох реакцій оксиду етилену – каталітичної (з участю солі) та некаталітичної [9].


Рис. 1.3 Залежність спостереженої константи швидкості від концентрації каталізатора при 900 С: 1 - CH3 COOLi; 2 - CH3 COONa; 3 - CH3 COOK; 4 - (CH3 COO)3 Cr; 5 - (Me)4 N+ CH3 COO ; 6 - (Et)4 N+ CH3 COO [9]

Отримані залежності описуються рівнянням:

kсп = kн + kкат ·скат (1.2), де

kн – константа швидкості некаталітичної реакції, с-1 ; kкат - константа швидкості каталітичної реакції, л/(моль·с) [9].

Для встановлення порядку реакції за каталізатором було досліджено кінетику реакції оцтової, акрилової та метакрилової кислот з 1,2-епоксі-3-феноксіпропаном, яка каталізується ацетатом хрому (ІІІ) при 700 С. Концентрація каталізатору варіювалася у межах від 0.002 до 0.008 моль/л (у випадку акрилової та метакрилової кислот) та від 0.008 до 0.015 моль/л (у випадку оцтової кислоти) [8].


Рис. 1.4 Залежність ефективної константи швидкості карбонової кислоти від концентрації каталізатору при Т=700 С: 1 – CH2 =CH─COOH; 2 – CH2 =C(CH3 )─COOH; 3 – CH3 COOH [8]

Наведена вище графічна залежність у всіх випадках носить прямолінійний характер, що свідчить про перший порядок реакції за каталізатором [8].

1.6 Вплив структури каталізатору на швидкість реакції

Для вивчення впливу структури каталізатору була вивчена реакція оцтової, акрилової та метакрилової кислот з 1,2-епоксі-3-феноксіпропаном у присутності ряду метилзаміщених похідних піридину [8]. Збільшення швидкості реакції спостерігалося, коли піридин був заміщений метильним радикалом у третьому або четвертому положеннях, у той самий час, коли α-піколін (2-метилпіридин) виявився менш активним каталізатором, ніж незаміщений піридин. Подібна залежність каталітичної активності від структури каталізатору була виявлена для метилпохідних хіноліну [8].

При вивченні кінетичних закономірностей цієї реакції у присутності третинних амінів була виявлена залежність каталітичної активності від розміру катіона активної форми каталізатора. На основі отриманих експериментальних даних було встановлено, що із збільшенням радіусу катіона електростатична взаємодія між іонами ставала слабшою, нуклеофільність карбоксилат-аніону збільшувалася і збільшувалася каталітична активність. Такий взаємозв’язок був отриманий для реакції карбонових кислот з 1,2-епоксіпропаном та 1-хлор-2,3-епоксіпропаном. Однак, стеричні фактори можуть змінювати таку закономірність. Зменшення швидкості реакції спостерігалося для катіонів "великого розміру" у випадку 2-метилпіридину та 2-метилхіноліну [8].

1.7 Каталіз реакції фенілгліцидилового ефіру з карбоновими кислотами у присутності каталізатору N,N-диметиланіліну

Для пояснення прискорюючої дії жирноароматичних третинних амінів були запропоновані механізми загального основного та нуклеофільного каталізів реакції фенілгліцидилового ефіру з оцтовою та бензойною кислотами у присутності каталізатору N,N-диметиланіліну (ДМА), де амін виступає у ролі основи (реакція 1.1) або у ролі нуклеофіла (реакція 1.2) [9]:

К-во Просмотров: 443
Бесплатно скачать Дипломная работа: Вплив структури аліфатичних карбонових кислот та третинних амінів на каталітичний ацидоліз епіхлоргідрину