Книга: Элективный курс по математике для классов спортивно-оборонного профиля
Решение: Как известно всего 10 цифр. Представим пятизначное число, как *****, где вместо первой звездочки можно подставить все цифры кроме 0, так как если подставим 0, то получим четырехзначное число (нам надо пятизначное). Вместо второй звездочки можно подставить 10 цифр, аналогично вместо оставшихся можно подставлять любую из 10 цифр. Таким образом, у нас имеется 5 групп элементов, первая группа содержит 9 элементов, а оставшиеся 4 группы содержать по 10 элементов. Тогда используя формулу найдем количество пятизначных чисел:
Теорема: о выборе, с учетом порядка
Общее количество выбора k элементов из n элементов с учетом порядка определяется формулой:
и называется числом размещений из n элементов по k элементов .
Решим задачу: В областных соревнованиях по футболу участвует 8 команд. Требуется определить сколькими способами можно составить группу, состоящую их 4 команд.
Другими словами нам нужно выбрать 4 футбольных команды из 8 команд, т.е:
Теорема: выбор без учета порядка
Общее количество выборок в схеме выбора k элементов из n без возвращения и без учета порядка определяется формулой
и называется числом сочетаний из n элементов по k элементов .
1.4 Основные правила вычисления вероятностей
Приведем основные правила, позволяющие определить вероятность появления сложного события, состоящего из более простых событий, вероятность которых нам известна.
1.Вероятность достоверного события равна единице:
P ( E )=1.
2. Вероятность суммы несовместных событий равна сумме их вероятностей.
Р(А1 + А2 +…+ А n )=Р(А1 )+ Р(А2 )+…+ Р(А n ).
Эти два равенства являются аксиомами, то есть не требуют доказательства. На основе этих равенств строится вся теория вероятностей. Приведенные ниже формулы можно вывести при помощи этих аксиом.
3. Вероятность невозможного события равна 0:
P (Ø)=0.
4.Вероятность противоположного события равна:
Р(Ā)=1-Р(А)
5.Вероятность объединения произвольных событий равна сумме их вероятностей без вероятности произведения событий
Р(А+В)=Р(А)+Р(В)-Р(АВ).
В общем случае данная формулы выглядит так:
.
Определение . Событие А В называются независимыми, если Р(АВ)=Р(А)Р(В).
На практике часто путают независимые и несовместные события, это разные понятия. Другими словами можно сказать, если события связаны независимыми экспериментами, то и сами события будут независимыми.
Решение задач
Пример 1. Применим теперь полученные знания для решения задач