Книга: Элективный курс по математике для классов спортивно-оборонного профиля
Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Будем обозначать случайные величины прописными (заглавными) буквами: X , Y , Z , а их возможные значения соответствующими строчными буквами x , y , z . Если величина Х имеет три значения то они будут обозначены так: х1 , х2 , х3 .
3.1 Дискретные и непрерывные случайные величины
Обычно рассматриваются два типа случайных величин: дискретные и непрерывные.
Рассмотрим следующий пример: Число мальчиков пошедших в секцию бальных танцев среди 100 пришедших туда людей есть случайная величина, которая может принимать следующие значения 0, 1, 2, …, 100. Эти значения отделены друг от друга промежутками, в которых нет возможных значений Х . таким образом в этом примере случайная величина принимает отдельные изолированные значения.
Приведем второй пример: расстояние, которое пролетит диск при метании, есть величина случайная. Действительно величина зависит от многих факторов, например от ветра, температуры и других факторов, которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а; b ) .
В данном примере случайная величина может принять любое из значений промежутка (а; b ) . Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.
Уже из сказанного можно заключить о том, что целесообразно будет различать случайные величины, принимающие лишь отдельные изолированные значения, и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.
Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.
Еще примерами непрерывных случайных величин могут быть спортивный результат в беге или прыжках, рост и масса тела человека, сила мышц и другие.
3.2 Закон распределения вероятностей дискретной случайной
величины
Для задания дискретной случайной величины не достаточно перечислить все возможные ее значения, нужно еще указать их вероятнос