Книга: Проблема Ферма для простых показателей больше 3
X– (Z– Y) = a2d2 – C2d2 = d2(a2 – C2). (1.25)
С учетом условия п. 1.3.3 и равенств (1.23), (1.24) и (1.25) будет справедливо равенство и сравнение
X + Y – Z = K d0d1d2, Þ X + Y – Z º 0 mod K (1.26)
где K >3 (докажем ниже).
Решая совместно (1.26) и (1.23), (1.26) и (1.24), (1.26) и (1.25), получим соответственно:
С0 – a0 = K d1d2, (1.27)
a1 – C1 = K d0d2, (1.28)
a2 – C2 = K d0d1. (1.29)
Из равенства (1.27) с учетом условия (1.16) следует, что (a0,K) =1 и (C0,K) = 1, но тогда и (Z,K) = 1.
Из равенства (1.28) с учетом условия (1.19) следует, что (a1,K) =1 и (C1,K) = 1, но тогда и (Y,K) = 1.
Из равенства (1.29) с учетом условия (1.21) следует, что (a2,K) =1 и (C2,K) = 1, но тогда и (X,K) = 1.
Так как число Kпопарно взаимно простое с числами X, Yи Z, а одно из этих чисел четное (п.1.3.1.), то K – число нечетное.
В дальнейшем мы будем использовать числа Kи K2 в качестве модулей вспомогательных сравнений, для чего ниже будет дано углубленное представление об числе K.
1.4 Формулы Абеля в наших обозначениях и их связь с другими установленными соотношениями
Для 1-го случая Проблемы Ферма (далее ПФ), т.е. когда (X, P) = 1, (Z, P) = 1, (Y, P) = 1, формулы Абеля и основные соотношения(1.3.2) будут связаны соответственно:
X+ Y= =C0d0, отсюда С0=, (1.30)
Z– X= = C1d1, отсюда С1 = , (1.31)
Z– Y= = C2d2, отсюда C2 = ; (1.32)
X P–1 – X P–2 Y + …– XY P–2 + Y P–1 = , (1.33)
Z P–1 + Z P–2 X + …+ ZX P–2 + X P–1 = , (1.34)
Z P–1 + Z P–2 Y +…+ ZY P–2 + Y P–1 = . (1.35)
Для 2-го случая ПФ ограничимся вариантом, когда
(Z, P) = P, (X, P) = 1, (Y, P) = 1, в этом случае формулы Абеля и основные соотношения (1.3.2) будут связаны соответственно:
X + Y = /P = C0d0,
C0 = d0P -1/P, (1.36)
Левые части формул Абеля (1.33),(1.34),(1.35) и (1.37), запишем с учетом (1.7) и (1.6) – теоремы 1.1., , а также с учетом (1.11) теоремы 1.2.вынося PXYза квадратные скобки:
С учетом теоремы 1.1.
(X+ Y)P–1 – PXY[(X+ Y)P–3 +XY(X+Y)P–5 +…+(–1)P–5/2 XP–5/2 YP–5/2 (X + Y)2 + (–1)P–3/2XP–3/2YP–3/2 ] = [для (1.33)], (1.38)
(Z - X)P–1 + PZX[(Z - X)P–3 + ZX(Z - X)P–5 ZP–5/2 XP–5/2 (Z - X )2 + ZP–3/2 XP–3/2 ] = [для (1.34)], (1.39)