Книга: Розвязування економетричних задач
Взагалі операція множення матриць не комутативна:
.
Квадратну матрицю можна помножити саму на себе, тобто піднести до квадрата.
Для дій над матрицями справедливі такі властивості:
а)
- асоціативний закон множення матриць;
б)
- дистрибутивний закон множення матриці на суму матриць;
в)
- комутативний закон множення квадратної матриці на одиничну матрицю такого ж порядку.
Транспонування матриць
Матриця ’ називається транспонованою відносно матриці , якщо кожен стовпець матриці ’ є відповідним рядком матриці , тобто перший стовпець матриці ’є першим рядком матриці , відповідно другий стовпець матриці ’ є другим рядком матриці і т.д.
Для елементів транспонованих матриць виконується умова
.
Якщо квадратна матриця симетрична, то виконується умова .
Властивості транспонованих матриць:
1.
2.
3.
4.
Інвертування матриць
Розглянемо невироджену матрицю n-го порядку:
.
Квадратна матриця називається невиродженою, якщо її визначник не дорівнює нулю, тобто , і виродженою, якщо її визначник дорівнює нулю, тобто .
Квадратна матриця називається оберненою до квадратної матриці того ж порядку, якщо їх добуток дорівнює одиничній матриці:
Визначення рангу матриці
Якщо у будь-якій матриці виділити r довільних столбців та r довільних рядків, то з елементів матриці, які містяться на перетині цих рядків і стовпців, можна скласти визначник r-го порядку. Його називають мінором r-го порядку.
Рангом матриці називають число, яке дорівнює найвищому порядку її мінора, відмінного від нуля (rang [A]).
Диференціальне обчислювання в матричній формі