Контрольная работа: Абстрактные цифровые автоматы
Содержание
1. Абстрактные цифровые автоматы
1.1 Основные понятия
1.2 Типы абстрактных автоматов
1.3 Способы задания абстрактных автоматов
1.4 Связь между моделями Мили и Мура
1.5 Эквивалентные автоматы. Эквивалентные преобразования автоматов
1.6 Минимизация числа внутренних состояний автомата
Вывод
Список литературы
Введение
Тема контрольной работы по дисциплине "Прикладная теория цифровых автоматов" - "Абстрактные цифровые автоматы".
Цель работы - ознакомится с основными понятиями абстрактных цифровых автоматов; типами абстрактных автоматов; способами задания абстрактных автоматов; связью между моделями Мили и Мура; эквивалентными автоматами и эквивалентными преобразованиями автоматов; минимизацией числа внутренних состояний автомата и алгоритмом Ауфенкампа-Хона.
1. Абстрактные цифровые автоматы
1.1 Основные понятия
Цифровой автомат можно трактовать как устройство, осуществляющее прием, хранение и преобразование дискретной информации по некоторому алгоритму. С определенной точки зрения к автоматам можно отнести как реальные устройства (ЭВМ), так и абстрактные системы (математические модели).
Автоматом называется дискретный преобразователь информации, способный принимать различные состояния, переходить под воздействием входных сигналов из одного состояния в другое и выдавать выходные сигналы.
Общая теория автоматов подразделяется на абстрактную и структурную.
Абстрактная теория автоматов, отвлекаясь от структуры автомата (т.е. не интересуясь способом его построения), изучает лишь поведение автомата относительно внешней среды. Абстрактная теория автоматов близка к теории алгоритмов, являясь по существу ее дальнейшей реализацией.
В противоположность абстрактной теории автоматов, структурная теория автоматов интересуется как структурой самого автомата, так и структурой входных воздействий и реакций автомата на них. В структурной теории изучаются способы построения автоматов, способы кодирования входных воздействий и реакций автомата на них. Структурная теория автоматов является продолжением и развитием абстрактной теории. Опираясь на аппарат булевых функций и на абстрактную теорию автоматов, структурная теория дает эффективные рекомендации по разработке реальных устройств вычислительной техники.
Абстрактный цифровой автомат (ЦА) является математической моделью дискретного управляющего устройства.
Абстрактный ЦА определяется множеством, состоящим из шести элементов:
S={ X,A,Y,,ao },
где:
X={x1 , x2 ,. xn } - множество входных сигналов (входной алфавит);
Y={y1 , y2 , ym } - множество выходных сигналов (выходной алфавит);
А={ a0 ,a1 , a2 ,. аN } - множество состояний (алфавит состояний);
ао - начальное состояние (ао А);
- функция переходов автомата, задающая отображение (ХхА) А, т.е. ставящая в соответствие любой паре элементов декартового произведения (ХхА) элемент множества А;
- функция выходов автомата, задающая либо отображение (XxA) Y, либо отображение AY.
Иными словами, функция переходов показывает, что автомат S, находясь в некотором состоянии аj А, при появлении входного сигнала хj Х переходит в некоторое состояние ар А. Это можно записать:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--