Контрольная работа: Абстрактные цифровые автоматы

b22

Поставим в соответствие каждой паре аi /xk состояние Ьik (i-номер состояния, k-номер входного сигнала), с учетом b0 .

Составим таблицу переходов автомата Мура, руководствуясь следующими правилами:

1) Выпишем из таблицы 1.11 состояния автомата Мили и соответствующие каждому из них множества состояний автомата Мура (bik ):

а0 = {b0 , b02 , b11 , b21 }; a1 = {b22 }; а2 = {b01 , b12 };

2) Если состояние автомата Мура bik входит в множество, соответствующее состоянию аp автомата Мили, то в строку таблицы переходов автомата Мура для состояния bik следует записать строку из таблицы переходов автомата Мили, соответствующую состоянию ар (из 1.10.).

3) Функцию выходов автомата Мура определим следующим образом: B (bik ) =Ai , xk ). Для начального состояния b0 значение выходного сигнала можно выбрать произвольно, но порождаемый начальным состоянием a0 (с учетом понятия эквивалентности состояний). Результирующая таблица переходов и выходов автомата Мура эквивалентного автомату Мили, заданному таблицей 1.10 представлена в таблице 1.12.

4) Найдем в таблице 1.12 эквивалентные состояния и удалим их (заменим на представителя класса эквивалентности).

Если выходной сигнал возле b0 доопределить y1 , то окажется, что в данной таблице переходов находится 3 эквивалентных состояния (b0 ,b11 ,b02 ). Заменив класс эквивалентности одним представителем (b0 ), получим окончательную таблицу переходов (табл.1.13).

Таблица 1.12

x1 x2 Y
b0 b01 b02 y1
b01 b21 b22 y1
b02 b01 b02 y1
b11 b01 b02 y1
b12 b21 b22 y2
b21 b01 b02 y2
b22 b11 b12 y1

Таблица 1.13.

x1 x2 У
b0 b01 b0 y1
b01 b21 b22 y1
b12 b21 b22 y2
b21 b01 b0 y2
b22 b0 b12 y1

Изложенные методы взаимной трансформации автоматов Мили и Мура показывают, что при переходе от автомата Мура к автомату Мили число состояний автомата не изменяется, тогда как при обратном переходе число состояний в автомате Мура, как правило, возрастает.

Таким образом, эквивалентные между собой автоматы могут иметь различное число состояний, в связи с чем возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов. Существование для любого абстрактного автомата эквивалентного ему абстрактного автомата с минимальным числом внутренних состояний впервые было доказано Муром.

1.6 Минимизация числа внутренних состояний автомата

Алгоритм Ауфенкампа-Хона.

В основу метода минимизации состояний автомата положена идея разбиения всех состояний исходного, абстрактного автомата на попарно не пересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием (представителем данного класса). Образующийся в результате этих преобразований минимальный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются исходные состояния.

Два состояния автомата am и as называются эквивалентными (am =as ), если  (am ,X) =  (as ,X) для всех возможных входных слов длины X.

Если am и as не эквивалентны, они различимы. Более слабой эквивалентностью является K-эквивалентность. Состояния am и аs K-эквивалентны, если  (am , Хk ) =  (as , Хk ) для всех возможных входных слов длины К. При минимизации числа внутренних состояний автомата Мили S={X,Y, А, , , а0 } используется алгоритм Ауфенкампа-Хона:

1. Находят последовательные разбиения 1 ,2 ,…,k ,k +1 , множества А на классы одно-, двух-,., К-, (К+1) - эквивалентных состояний до тех пор, пока на каком-то (К+1) шаге не окажется, что k =k +1 . В этом случае К-эквивалентные состояния являются эквивалентными. Число шагов К, при котором k =k +1 не превышает N-1, где N - число внутренних состояний автомата.

2. В каждом классе эквивалентности выбирают по одному элементу (представителю класса), которые образуют множества А' состояний минимального автомата S'.

3. Функцию переходов ' и выходов ' автомата S' определяют на множестве A'xX.

Для этого в таблице переходов и выходов вычеркивают столбцы, соответствующие не вошедшим в множество А' состояниям, а в оставшихся столбцах таблицы переходов все состояния заменяются на эквивалентные из множества А', (на представителей).

4. В качестве а'0 выбирается одно из состояний, эквивалентное состоянию а0 . В частности, удобно принять само состояние а0 .

При минимизации автомата Мура вводится понятие 0-эквивалентности состояний и разбиения множества состояний на 0-классы: 0-эквивалентными называются любые, одинаково отмеченные выходными сигналами, состояния автомата Мура. В качестве примера рассмотрим минимизацию автомата Мура, заданного таблицей переходов и выходов (Таблица 1.14).

Таблица 1.14

У y1 y1 y3 y3 y3 y2 y3 y1 y2 y2 y2 y2

К-во Просмотров: 332
Бесплатно скачать Контрольная работа: Абстрактные цифровые автоматы