Контрольная работа: Экономическое моделирование

Поскольку доля остаточной дисперсии в общей составила 18%, поэтому уравнение регрессии объясняется 82% дисперсии результативного признака, т. е. коэффициент детерминации равен R2 = 0,82.

Индекс корреляции находится: Величина индекса корреляции достаточно близка к 1 и означает наличие достаточно тесной связи объема спроса от размера цены.

F –тест состоит в проверке гипотезы H0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого сравнивается фактическое и критическое значение F-критерия Фишера. При уровне значимости α = 0,05, k1 = 1 (m) и k2 = 20 (n-m-1=20-1-1) степенях свободы табличное значение F-критерия Фишера :

.

> ,

то H0 – гипотеза о случайной природе оцениваемых характеристик откланяется и признается их статистическая значимость и надёжность.

Вывод: уравнение регрессии характеризует достаточно тесную зависимость спроса на товар K от его цены. Причем, наблюдается обратная зависимость: с увеличением цены, спрос падает.


Задача 4

Изучение влияния стоимости основных и оборотных средств на величину валового дохода торговых предприятий. Для этого по 12 торговым предприятиям были получены данные, приведенные в таблице:

Номер предприятия Валовой доход за год, млн.руб. Среднегодовая стоимость, млн.руб.
основных фондов оборотных средств
1 203 118 105
2 63 28 56
3 45 17 54
4 113 50 63
5 121 56 28
6 88 102 50
7 110 116 54
8 56 124 42
9 80 114 36
10 237 154 106
11 160 115 88
12 75 98 46

Задание

1. Постройте линейное уравнение множественной регрессии и поясните экономический смысл его параметров. Оцените статистическую значимость параметров регрессионной модели с помощью t-критерия.

2. Рассчитайте средние коэффициенты эластичности.

3. Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделайте выводы о силе связи результата и факторов.

4. Дайте оценку полученного уравнения на основе общего F-критерия Фишера.

5. Оцените качество уравнения через среднюю ошибку аппроксимации.

6. Рассчитайте прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.

7. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение.

Построение линейной множественной регрессии сводится к оценке ее параметров – а, b1 и b2. Для расчета параметров а, b1 и b2 уравнения регрессии решаем систему нормальных уравнений относительно а, b1 и b2 :

По исходным данным произведем расчет предварительных параметров (табл. 4.1)

Таблица 4.1

У Х1 Х2 Х1 2 Х2 2 Х1 ·Х2 У·Х1 У·Х2 ŷ
1 203 118 105 13924,00 11025,00 12390,00 23954,00 21315,00 197,29
2 63 28 56 784,00 3136,00 1568,00 1764,00 3528,00 80,63
3 45 17 54 289,00 2916,00 918,00 765,00 2430,00 73,07
4 113 50 63 2500,00 3969,00 3150,00 5650,00 7119,00 100,80
5 121 56 28 3136,00 784,00 1568,00 6776,00 3388,00 44,39
6 88 102 50 10404,00 2500,00 5100,00 8976,00 4400,00 98,90
7 110 116 54 13456,00 2916,00 6264,00 12760,00 5940,00 110,97
8 56 124 42 15376,00 1764,00 5208,00 6944,00 2352,00 93,91
9 80 114 36 12996,00 1296,00 4104,00 9120,00 2880,00 80,01
10 237 154 106 23716,00 11236,00 16324,00 36498,00 25122,00 212,75
11 160 115 88 13225,00 7744,00 10120,00 18400,00 14080,00 167,62
12 75 98 46 9604,00 2116,00 4508,00 7350,00 3450,00 90,66
Итого: 1351,00 1092,0 728,0 119410,0 51402,0 71222,0 138957,0 96004,0 1351,00

Систему линейных уравнений удобно решать методом Крамера (метод определителей):

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

частный определитель параметра а.

К-во Просмотров: 383
Бесплатно скачать Контрольная работа: Экономическое моделирование