Контрольная работа: Экономическое моделирование

Парный коэффициент корреляции между у и х2 рассчитывается по формуле:


Произведем расчет необходимых параметров в таблице 4.3

Таблица 4.3

У Х2
1 203,0 105,0 90,4 44,3 4008,47 8175,17 1965,44
2 63,0 56,0 -49,6 -4,7 231,39 2458,51 21,78
3 45,0 54,0 -67,6 -6,7 450,56 4567,51 44,44
4 113,0 63,0 0,4 2,3 0,97 0,17 5,44
5 121,0 28,0 8,4 -32,7 -274,94 70,84 1067,11
6 88,0 50,0 -24,6 -10,7 262,22 604,34 113,78
7 110,0 54,0 -2,6 -6,7 17,22 6,67 44,44
8 56,0 42,0 -56,6 -18,7 1056,22 3201,67 348,44
9 80,0 36,0 -32,6 -24,7 803,72 1061,67 608,44
10 237,0 106,0 124,4 45,3 5640,22 15479,51 2055,11
11 160,0 88,0 47,4 27,3 1296,06 2248,34 747,11
12 75,0 46,0 -37,6 -14,7 551,22 1412,51 215,11
Итого 1351,00 728,00 14043,33 39286,92 7236,67
Среднее значение 112,6 60,7

Тогда коэффициент корреляции между у и х2 составит:

Парный коэффициент корреляции между х1 и х2 рассчитывается по формуле:

Произведем расчет необходимых параметров в таблице 4.4


Таблица 4.4

х1 х2
1 118,0 105,0 27,0 44,3 1197,00 729,00 1965,44
2 28,0 56,0 -63,0 -4,7 294,00 3969,00 21,78
3 17,0 54,0 -74,0 -6,7 493,33 5476,00 44,44
4 50,0 63,0 -41,0 2,3 -95,67 1681,00 5,44
5 56,0 28,0 -35,0 -32,7 1143,33 1225,00 1067,11
6 102,0 50,0 11,0 -10,7 -117,33 121,00 113,78
7 116,0 54,0 25,0 -6,7 -166,67 625,00 44,44
8 124,0 42,0 33,0 -18,7 -616,00 1089,00 348,44
9 114,0 36,0 23,0 -24,7 -567,33 529,00 608,44
10 154,0 106,0 63,0 45,3 2856,00 3969,00 2055,11
11 115,0 88,0 24,0 27,3 656,00 576,00 747,11
12 98,0 46,0 7,0 -14,7 -102,67 49,00 215,11
Итого 1092,00 728,00 4974,00 20038,00 7236,67
Средне значение 91,0 60,7

Тогда коэффициент корреляции между х1 и х2 составит:

При трех переменных для двухфакторного уравнения регрессии рассчитаем определители матрицы парной корреляции и межфакторной корреляции:

;

Тогда совокупный коэффициент множественной корреляции составит:


По данным из табл. 2, 3 рассчитаем теперь среднее квадратическое отклонение величин у, х1 и х2 по формулам:

Рассчитаем теперь средние квадратические ошибки коэффициентов регрессии b1 и b2

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значений:

При уровне значимости α = 0,05, df = 11 (n-m-1=12-2-1) степенях свободы табличное значение t-критерия Стьюдента 2,26.

Сравнив его с расчетными значениями, получаем, что , из чего следует, что гипотезу о несущественности параметра b2 с вероятностью 95% (p = 1 – α) следует отклонить. А вот из чего следует, что гипотезу о несущественности параметра b1 с вероятностью 95% (p = 1 – α) следует принять и признается статистическая незначимость параметра b1 .

2. Для характеристики относительной силы влияния х1 и х2 на у используя коэффициенты регрессии можно рассчитать средние коэффициенты эластичности. Как правило, их рассчитывают для средних значений факторов и результатов.

С увеличением среднегодовой стоимости основных фондов (х1 ) на 1% от его среднего уровня, средний объем валового дохода за год увеличится на 0,37% от своего среднего уровня; при повышении среднегодовой стоимости оборотных средств на 1% - увеличится на 0,53% от своего среднего уровня. Очевидно, что сила влияния средней стоимости оборотных средств (х2 ) на валовой доход (у) оказалась сильнее, чем сила влияния средней стоимости основных фондов (х1 ).

К-во Просмотров: 382
Бесплатно скачать Контрольная работа: Экономическое моделирование