Контрольная работа: Экономико математические методы и модели 3
160
480
0
Начальные планы распределения товаров определены по методу максимальной прибыли, т.е. в первую очередь заполнялись по максимуму клетки с наибольшими тарифами. Более конкретно, просматривая таблицу 1.2, замечаем, что максимальный тариф 12 стоит в клетке (1,1). В эту клетку ставим число 400. При этом запасы производителя А1 исчерпан. Далее, в клетку (3,1) ставим 80, а в клетку (3,2) ставим 270. Из запасов производителя А3 осталось 70, так как 420-80-270=70, ставим их в клетку (3,3). Потребность покупателей В1 и В2 в товарах исчерпаны, следовательно, оставшиеся 480 товаров производителя А2 ставим в клетку (2,3). При этом товар производителей
полностью распределён.
Полученный начальный план проверим на оптимальность. План невырожденный, так как число занятых клеток (3+3-1=5) равно m + n – 1 (m и n – число строк и столбцов распределительной матрицы). Обозначим через и
потенциалы строк и столбцов. Для их нахождения отметим, что в занятых клетках сумма потенциалов строки и столбца должна равняться тарифу клетки. Получаем в данном случае 5 уравнений с 6-ю неизвестными:
v1 + u1 = 12; v2 + u3 = 11; v3 + u3 = 0.
v1 + u3 = 11; v3 + u2 = 0;
Полагая, что v3 = 0, последовательно получаем: u2 = 0, u3 = 0, v2 = 11, v1 = 11, u1 = 1.
Так как задача решается на максимум, то для оптимальности плана распределения, сумма потенциалов в незанятых клетках должна быть не меньше тарифов этих клеток. В нижних левых углах незанятых клеток выписаны суммы потенциалов. Все они превосходят соответствующие тарифы, т.е. начальный план закрепления покупателей за производителями по товару оптимален.
Аналогично, таблица 1.3 заполнена в следующей последовательности:
(3,2) – 320, (1,1) – 130, (1,3) – 280, (3,3) – 160, (2,3) – 550. Полученный план невырожденный, так как содержит 3 + 3 – 1 = 5 занятых клеток. Проверим его на оптимальность. Выпишем систему уравнений для нахождения потенциалов:
v1 + u1 = 9; v3 + u1 = 0; v3 + u3 = 0.
V2 + u3 = 11; v3 + u2 = 0;
Полагая, что u3 = 0, последовательно получаем: v3 = 0, u2 = 0, u1 = 0, v2 = 11, v1 = 9.
План распределения товара T 2 , заданный таблицей 2, оптимален.
Сумма прибыли = (12*400 + 11*80 + 11*270) + (9*130 + 11*320) = = 8650 + 4690 = 13340.
ОТВЕТ:
X111 = 400, X311 = 80, X321 = 270, X112 = 130, X322 = 320. Остальные = 0. Максимальная прибыль равна 13340.
Задача 2-1
С помощью алгоритма венгерского метода найти план закрепления работ за исполнителями, максимизирующий прибыль, связанную с выпуском всех пяти видов продукции. Матрица эффективности AN =, где
– прибыль, получаемая при выполнении j -й работы i -м исполнителем, N - номер варианта, имеет вид:
40 | 28 | 44 | 38 | 46 | ||
36 | 52 | 51 | 43 | 30 | ||
A12= | 40 | 29 | 48 | 45 | 34 | , |
56 | 54 | 53 | 46 | 49 | ||
51 | 41 | 50 | 55 | 41 |
РЕШЕНИЕ:
I этап: приведение матрицы А12.
Алгоритм венгерского метода предназначен для решения задачи о назначениях по критерию минимизации суммарных затрат (задача на минимум). При решении задачи на максимум (так как – прибыль), ее следует свести к задаче на минимум. Для этого в каждом столбце матрицы определяем максимальный элемент и из него вычитаем все элементы столбца.
40 | 28 | 44 | 38 | 46 | 16 | 26 | 9 | 17 | 3 | |||
36 | 52 | 51 | 43 | 30 | 20 | 2 | 2 | 12 | 19 | |||
A12= | 40 | 29 | 48 | 45 | 34 | → A121= | 16 | 25 | 5 | 10 | 15 | → |
56 | 54 | 53 | 46 | 49 | 0 | 0 | 0 | 9 | 0 | |||
51 | 41 | 50 | 55 | 41 | 5 | 13 | 3 | 0 | 8 | |||
56 | 54 | 53 | 55 | 49 |
Так как в строках 1, 2, 3 нулей не оказалось, то вычитаем из элементов этих строк минимального из них, то есть вычитаем из строки 1 число 3, из строки 2 число 2, из строки 3 число 5. Получаем нули в этих строках.
13 | 23 | 6 | 14 | 0 | ||
18 | 0 | 0 | 10 | 17 | ||
→ A122= | 11 | 20 | 0 | 5 | 10 | → |
0 | 0 | 0 | 9 | 0 | ||
5 | 13 | 3 | 0 | 8 |
II этап: поиск назначения.
Выбираем один из нулей, помечаем его, например, точкой или звездочкой или обводим его другим цветом (в дальнейшем, звездочкой), а остальные нули строки и столбца, в которых стоит выбранный помеченный нуль, перечеркиваем. Далее переходим к следующему нулю. И так до тех пор, пока каждый нуль будет либо помечен, либо перечеркнут.
13 | 23 | 6 | 14 | 0* | |
18 | 0* | Ø | 10 | 17 | |
→ A122= | 11 | 20 | 0* | 5 | 10 |
0* | Ø | Ø | 9 | Ø | |
5 | 13 | 3 | 0* | 8 |
Помеченные нули составили полное назначение (количество помеченных нулей равно 5).
Следовательно, 1 исполнитель назначается на 5-ю работу, 2→2, 3→3, 4→1, 5→4.
Задача 3-1
Предприятие включает в себя три цеха по производству различной продукции и использует при этом четыре вида первичных ресурсов. Продукция, выпускаемая каждым цехом, частично отгружается за пределы предприятия (для удовлетворения конечного спроса), а частично распределяется внутри предприятия между цехами в качестве вторичных ресурсов. Баланс предприятия в натуральном выражении за прошедший год приведен в следующих двух таблицах 3.1.1 и 3.1.2: