Контрольная работа: Экономико математические методы и модели 3

Оптимальной по критерию Байеса является стратегия , так как именно ей соответствует наибольшее из чисел :

max { 54.1 ; 73 ; 46 } = 73 ;

Таким образом, располагая информацией о возможных состояниях природы, наиболее выгодным для фермера будет использование стратегии А1 – вносить 2 ц. удобрений на 1 гектар земли. Среднее значение ожидаемой прибыли в этом случае составит 54,1 ден. ед.

б) для определения оптимальной стратегии игрока А с использованием максимаксного критерия , применим формулу: .

Получаем:

m1 = {37; 73; 46} = 73;

m2 = {34; 44; 29} = 44;

m3 = {15; 21; 9} = 21;

Оптимальной по максимаксному критерию является стратегия , так как именно ей соответствует наибольшее из чисел :

max { 73 ; 44 ; 21 } = 73 ;

Таким образом, в расчете на самое благоприятное стечение обстоятельств, наиболее выгодным для домовладельца будет использование стратегии – вносить 2 ц. удобрений на 1 гектар земли. Прибыль, потраченная при этом от продажи зерна, составит 73 ден. ед.

Определим оптимальную стратегию игрока А по критерию Вальда :

w1 = min {37; 73; 46} = 37;

w2 = min {34; 44; 29} = 29;

w3 = min {15; 21; 9} = 9.

max { 37 ; 29 ; 9 } = 37 ;

Следовательно, оптимальной по критерию Вальда является стратегия – вносить 2 ц. удобрений на 1 гектар земли. При этом минимальная прибыль составит 37 ден. ед.

Для определения оптимальной стратегии игрока А с использованием критерия Сэвиджа составим матрицу рисков. В каждом столбце платежной матрицы определим максимальный элемент и вычтем из него все элементы данного столбца. В первом столбце максимальным является элемент h11 = 37, во втором – h12 = 73, в третьем – h13 = 46.

Матрица рисков представлена в таблице 4.2.

Таблица 4.2

0 0 0
3 29 17
22 52 37

Определим максимальный риск при использовании каждой стратегии.

Получаем:

r1 = max {0; 0; 0} = 0,

r2 = max {3; 29; 17} = 29,

r3 = max {22; 52; 37} = 52.

min { 0 ; 29 ; 52 } = 0 ;

Таким образом, оптимальной по Сэвиджу является стратегия – вносить 2 ц. удобрений на 1 гектар земли.

Для определения оптимальной стратегии по критерию Гурвица найдем показатель критерия по формуле , .

Получаем:


γ1 = 0,8*37 + (1 – 0,8)*73 = 44,2;

γ2 = 0,8*29 + (1 – 0,8)*44 = 32,0;

К-во Просмотров: 282
Бесплатно скачать Контрольная работа: Экономико математические методы и модели 3