Контрольная работа: Экономико-математический практикум

Учитывая, что все переменные неотрицательны, перейдем от уравнений к неравенствам из общего решения системы.


откуда получим систему неравенств с двумя переменными

Целевую функцию выразим через свободные переменные

Окончательно получим стандартную задачу линейного программирования с двумя переменными

Строим область допустимых решений (график 2). Любая точка многоугольника удовлетворяет системе неравенств. Вершина является точкой входа семейства прямых в область решений, следовательно, в этой точке она принимает минимальное значение.

В свою очередь, =(1,32;0,12).

Решая систему уравнений получаем х1 =2,2, х2 =0,6. Это и будет оптимальным решением данной задачи, которому соответствует минимальное значение целевой функции Z min

.


6

4

A

А

2
(2)

(3)

график 2

2. Решим симплекс-методом задачу линейного программирования, используя метод искусственного базиса

Составим расширенную задачу. В левые части уравнений системы ограничений вводим неотрицательные искусственные переменные с коэффициентом +1. Удобно справа от уравнений записать вводимые искусственные переменные. В первое уравнение вводим переменную х 6 , во второе — переменную х 7 , в третье – х8 . Данная задача — задача на нахождение минимума. Получаем

Данная расширенная задача имеет начальное опорное решение с базисом . Вычисляем оценки векторов условий по базису опорного решения и значение целевой функции на опорном решении:


Записываем исходные и расчетные данные в симплексную таблицу (табл.2.2).

Таблица 2.2

1 -5 6 8 -2 М M M
Б Сб А 0 А 1 А 2 А 3 А 4 А 5 А 6 A7 A8
А 6 М 16 11 7 1 12 5 1 0 0
A7 M 17 14 10 0 3 8 0 1 0
А 8 М 15 13 2 9 4 6 0 0 1
0 -1 5 -6 -8 2 0 0 0
48 28 19 10 19 19 0 0 0

К-во Просмотров: 347
Бесплатно скачать Контрольная работа: Экономико-математический практикум