Контрольная работа: Элементы теории вероятностей. Случайные события
D – хотя бы одно попадание, т.е. или одно попадание, или два попадания или три попадания
Р(D) = Р( 1 и 2 и А3 или 1 и А 2 и 3 или А1 и 2 и 3 ИЛИ 1 и А2 и А3 или А1 и 2 и А3 или А1 и 2 и А3 ИЛИ А1 и А2 и А3 )
или по формуле
Р(D) = 1 – Р( 1 и 2 и 3 )
Е – больше одного попадания, т.е. или два попадания или три попадания
Р(Е) = Р( 1 и А2 и А3 или А1 и 2 и А3 или А1 и 2 и А3 или А1 и А2 и А3 )
F – не больше одного попадания, т.е. одно попадание и два промаха
Р(F) = Р( 1 и 2 и А3 или 1 и А 2 и 3 или А1 и 2 и 3 )
Задача 3.
Игральный кубик бросают два раза. Описать пространство элементарных событий. Описать события: А – сумма появившихся очков равна 8; В – по крайней мере один раз появится 6.
Решение:
Будем считать пространством элементарных событий множество пар чисел (i , j ), где i (соответственно j ) есть число очков, выпавших при первом (втором) подбрасывании, тогда множество элементарных событий будет таким:
W={(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)}
А – сумма появившихся очков равна 8. Этому событию благоприятствуют такие элементарные события А={(2,6) (6,2) (5,3) (3,5) (4,4)}.
В – по крайней мере один раз появится 6. Этому событию благоприятствуют такие элементарные события В={(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1,6) (2,6) (3,6) (4,6) (5,6)}.
Задача 4.
В вазе с цветами 15 гвоздик: 5 белых и 10 красных. Из вазы наугад вынимают 2 цветка. Какова вероятность того, что эти цветки: а) оба белые; б) оба красные; в) разного цвета; г) одного цвета.
Решение:
а) Пусть событие А состоит в том, что оба вынутых из вазы цветка белые.
Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 белых цветка из 5-ти белых равно = 2×5 = 10. Тогда по классическому определению вероятность события А равна
.
б) Пусть событие В состоит в том, что оба вынутых из вазы цветка красные.
Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 красных цветка из 10-ти красных равно = 9×5 = 45. Тогда по классическому определению вероятность события В равна
.