Контрольная работа: Явление резонанса и электрических цепей
Параллельный резонансный контур может содержать резистивные сопротивления (рис. 10). В этом случае комплексные проводимости ветвей будут равны
Y 1 =G 1 +jB 1 ; Y 2 =G 2 +jB 1 ,
а общая проводимость
Y = Y 1 + Y 2 = G 1 +G 2 +j (B 1 +B 2 ).
Условием резонанса будет:
Раскрывая выражение (23) через параметры цепи, получим
,
откуда резонансная частота wр –
где
резонансная частота в простейшем параллельном контуре (рис. 8 а)), а
волновое сопротивление простейшего параллельного контура.
Анализ выражения (21) показывает, что при разных резистивных сопротивлениях R 1 ¹R 2 резонанс возможен только, если оба сопротивления одновременно больше или меньше r . В противном случае выражение под корнем отрицательно, резонансная частота мнимая и не имеет физического смысла.
Если R 1 = R 2 , то wр = w0 , т.е. резонанс наступает при той же частоте, что и в простейшем контуре без потерь (рис. 8 а)).
Однако при этом условии возможен вариант, когда R 1 = R 2 = r . В этом случае подкоренное выражение в (21) становится неопределенным (0/0) и требуется его дополнительный анализ.
Ветви контура соединены параллельно и общее падение напряжения на них одинаково и равно сумме падений напряжения на элементах ветви. При любых изменениях частоты угол между напряжением на резисторе и реактивном элементе составляет 90° и т.к. сумма их постоянна и равна входному напряжению, то геометрическим местом точек конца вектора падения напряжения на резисторе будет полуокружность (рис. 11 а)). Причем, векторы ветви с индуктивностью будут вписываться в нижнюю полуокружность, а ветви с емкостью - в верхнюю. Входной ток I равен сумме токов ветвей I 1 и I 2 и резонанс наступает, если его направление совпадает с вектором входного напряжения U .
Разделим комплексные числа, соответствующие векторам напряжений рис. 11 а), на R = R 1 = R 2 = r и построим векторную диаграмму токов для режима резонанса (рис. 11 б)), т.е. так, чтобы сумма векторов I 1 и I 2 была равна U/R . Параллелограмм abcd имеет два противоположных прямых угла, поэтому два других угла j1 + j2 = p /2 . То, что сумма углов j1 и j2 равна 90° доказывается также и тем, что
.
Таким образом, при любой частоте векторы токов I 1 и I 2 образуют прямоугольник, вершины которого расположены на окружности, а диагональю является вектор U/R . Отсюда следует, что при всех частотах входной ток одинаков, совпадает по направлению с напряжением и полное сопротивление цепи чисто резистивное и равно r .