Контрольная работа: Интегралы. Функции переменных
, где - общее решение соответствующего однородного уравнения, - частное решение.
Найдем
Решим однородное дифференциальное уравнение
Характеристическое уравнение для него:
Это квадратное уравнение
d=36-100=-64 – дискриминант отрицательный, корни комплексные:
k1=3-4i ; k2=3+4i
Общее решение, следовательно, имеет вид:
,
где - константы.
Ищем частное решение. Функция свободного члена имеет вид:
, где a=2,b=3,k=1,p=-6,q=25
При этом , следовательно, частное решение ищем в виде:
Находим его производные первого и второго порядка и подставляем в уравнение:
Для нахождения коэффициентов А и В решим систему:
A=0,07, B=0,16
Таким образом, окончательное решение уравнения имеет вид:
IV. Ряды
1. Исследовать на сходимость ряд с положительными членами
Рассмотрим ряд:
Это степенной ряд с основанием меньшим 1, а он заведомо сходится.