Контрольная работа: Коэффициент детерминации. Значимость уравнения регрессии
3. Проверить выполнение предпосылок МНК
Проверим независимость остатков с помощью критерия Дарбина-Уотсона.
Вычислим коэффициент Дарбина-Уотсона по формуле:
.
Данные для расчета возьмем из таблицы 2.
dw = 0,803
Сравним полученное значение коэффициента Дарбина-Уотсона с табличными значениями границ и для уровня значимости 0,05 при k=1 и n=10. =0,88, =1,32, dw < d, значит, остатки содержат автокорреляцию. Наличие автокорреляции нарушает одну из предпосылок нормальной линейной модели регрессии.
Проверим наличие гетероскедастичности. Т.к. у нас малый объем выборки (n=10) используем метод Голдфельда-Квандта.
- упорядочим значения n наблюдений по мере возрастания переменной x и разделим на две группы с малыми и большими значениями фактора x соответственно.
- рассчитаем остаточную сумму квадратов для каждой группы.
Вычисления представим в таблицах 3 и 4.
Таблица 3. Промежуточные вычисления для 1-го уравнения регрессии.
t | xi | yi | yi* xi | xi*xi | |||
1 | 27 | 46 | 1242 | 729 | 47 | -1 | 1 |
2 | 27 | 48 | 1296 | 729 | 47 | 1 | 1 |
3 | 28 | 47 | 1316 | 784 | 49,5 | -2,5 | 6,25 |
4 | 28 | 52 | 1456 | 784 | 49,5 | 2,5 | 6,25 |
средн. знач. | 27,5 | 48,25 | |||||
1326,875 | |||||||
756,25 | |||||||
5310,00 | |||||||
3026,00 | |||||||
n | 4 | ||||||
2,5 | |||||||
- 20,5 | |||||||
14,5 |
Таблица 4. Промежуточные вычисления для 2-го уравнения регрессии.
t | xi | yi | yi* xi | xi*xi | |||
1 | 37 | 63 | 2331 | 1369 | 63,789 | -0,789 | 0,623 |
2 | 38 | 69 | 2622 | 1444 | 64,582 | 4,418 | 19,519 |
3 | 39 | 62 | 2418 | 1521 | 65,375 | -3,375 | 11,391 |
4 | 41 | 67 | 2747 | 1681 | 66,961 | 0,039 | 0,002 |
5 | 44 | 67 | 2948 | 1936 | 69,340 | -2,340 | 5,476 |
6 | 46 | 73 | 3358 | 2116 | 70,926 | 2,074 | 4,301 |
средн. знач. | 40,833 | 66,833 | |||||
2729,028 | |||||||
1667,361 | |||||||
16424 | |||||||
10067 | |||||||
n | 6 | ||||||
0,793 | |||||||
34,448 | |||||||
41,310 |
= =2,849
где - остаточная сумма квадратов 1-ой регрессии, - остаточная сумма квадратов 2-ой регрессии.
Полученное значение сравним с табличным значением F распределения для уровня значимости , со степенями свободы и ( - число наблюдений в первой группе, m – число оцениваемых параметров в уравнении регрессии).
, , m=1.
Если > , то имеет место гетероскедастичность.
= 5,41
< ,
значит, гетероскедастичность отсутствует и предпосылка о том, что дисперсия остаточных величин постоянна для всех наблюдений выполняется.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента .
Расчетные значения t-критерия можно вычислить по формулам:
,
,
,