Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа
т. е. условие (20) является необходимым условием устойчивости.
1.5 Схема Кранка-Николсона
параболическое дифференциальное уравнение конечная разность
Явная конечно разностная схема, записанная в форме
(21)
обладает тем достоинством, что решение на верхнем временном слое tk+l получается сразу (без решения СЛАУ) по значениям сеточной функции на нижнем временном слое t k , где решение известно (при k = 0 значения сеточной функции формируются из начального условия). Но эта же схема обладает существенным недостатком, поскольку она является условно устойчивой. С другой стороны, неявная конечно-разностная схема, записанная форме
(22)
приводит к необходимости решать СЛАУ, но зато эта схема абсолютно устойчива.
Проанализируем схемы (21) и (22). Пусть точное решение, которое неизвестно, возрастает по времени, т.е. . Тогда, в соответствии с явной схемой (21), разностное решение будет заниженным по сравнению с точным, так как определяется по меньшим значениям сеточной функции на предыдущем временном слое, поскольку решение является возрастающим по времени.
Для неявной схемы (22) на возрастающем решении, наоборот, решение завышено по сравнению с точным, поскольку оно определяется по значениям сеточной функции на верхнем временном слое.
На убывающем решении картина изменяется противоположным образом: явная конечно-разностная схема завышает решения, а неявная — занижает (Рисунок 4).
На основе этого анализа возникла идея о построении более точной неявно-явной конечно-разностной схемы с весами при пространственных конечно-разностных операторах, причем при измельчении шагов тик точное (неизвестное) решение может быть взято в «вилку» сколь угодно узкую, так как если явная и неявная схемы аппроксимируют дифференциальную задачу и эти схемы устойчивы, то при стремлении сеточных характеристик τ и h к нулю решения по явной и неявной схемам стремятся к точному решению с разных сторон.
Рисунок 4 – Двусторонний метод аппроксимации
Проведенный анализ дал блестящий пример так называемых двусторонних методов, исследованных В. К. Саульевым
Рассмотрим неявно-явную схему с весами для простейшего уравнения теплопроводности:
(23)
где θ – вес неявной части конечно-разностной схемы,
θ -1 – вес для явной части
Причем . При θ=1 имеем полностью неявную схему, при θ=0 – полностью явную схему, а при θ=1/2 – схему Кранка-Николсона .
В соответствии с гармоническим анализом для схемы (23) получаем неравенство
,
откуда
(24)
причем правое неравенство выполнено всегда.
Левое неравенство имеет место для любых значений σ , если . Если же вес θ лежит в пределах , то между σ и θ из левого неравенства устанавливается связь
(25)
являющаяся условием устойчивости неявно-явной схемы с весами (23), когда вес находится в пределах .
Таким образом, неявно-явная схема с весами абсолютно устойчива при и условно устойчива с условием (25) при .