Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа

В этом выражении дифференциальный оператор от квадратной скобки в соответствии с дифференциальным уравнением равен дифференциальному оператору , в соответствии с чем вышеприведенное равенство приобретает вид

После упрощения получаем

,

откуда видно, что для схемы Кранка-Николсона (θ = 1/2) порядок аппроксимации схемы (23) составляет , т.е. на один порядок по времени выше, чем для обычных явных или неявных схем. Таким образом, схема Кранка-Николсона при θ = 1/2 абсолютно устойчива и имеет второй порядок аппроксимации по времени и пространственной переменной х .

Используем в уравнение (23) подстановку r= a2 k / h2 . Но в то же время его нужно решить для трех "еще не вычисленных" значений , , и . Это возможно, если все значения перенести в левую часть уравнения. Затем упорядочим члены уравнения (23) и в результате получим неявную разностную формулу

(26)

для i=2,3,…, n-1 . Члены в правой части формулы (26) известны. Таким образом, формула (26) имеет вид линейной трехдиагональной системы АХ=В. Шесть точек, используемых в формуле Кранка-Николсона (26), вместе с промежуточной точкой решетки, на которой основаны численные приближения, показаны на рисунке 5.

Рисунок 5 – Шаблон (схема) метода Кранка-Николсона

Иногда в формуле (26) используется значение r=1 . В этом случае приращение по оси t равно , формула (26) упрощается и принимает вид

, (27)

для i=2,3,…, n-1 . Граничные условия используются в первом и последнем уравнениях (т. е. в и соответственно).

Уравнения (27) особенно привлекательны при записи в форме трехдиагональной матрицы АХ = В.

Если метод Кранка-Николсона реализуется на компьютере, то линейную систему АХ = В можно решить либо прямым методом, либо итерационным.


2. Практическая часть

2.1 Постановка задачи

Используем метод Кранка-Николсона, чтобы решить уравнение

,

где x ϵ(0;1),

t ϵ(0;0.1),

с начальным условием

,

где t=0,

x ϵ(0;1),

и граничными условиями

u(0,t) = g1 (t) ≡ 0,

К-во Просмотров: 372
Бесплатно скачать Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа