Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа

F=sin(pi*x)*exp(-pi^2*t)+sin(3*pi*x)*exp(-9*pi^2*t);

tisys.m

function X=trisys(A,D,C,B)

N=length(B);

for k=2:N

mult=A(k-1)/D(k-1);

D(k)=D(k)-mult*C(k-1);

B(k)=B(k)-mult*B(k-1);

end

X(N)=B(N)/D(N);

for k= N-1:-1:1

X(k)=(B(k)-C(k)*X(k+1))/D(k);

end

crnich.m

function [U,Y]=crnich(c1,c2,a,b,c,n,m)

clc;

% - c1=u(0,t) и c2=u(a,t)

% - а и b - правые точки интервалов [0,а] и [0,Ь]

% - с - постоянная уравнения теплопроводности

% - n и m - число точек решетки на интервалах [0,а] и [0,Ь]

%Выход - U - матрица решений

%Инициализация параметров и матрицы U

h=a/(n-1);

k=b/(m-1);

r=c^2*k/h^2;

s1=2+2/r;

s2=2/r-2;

U=zeros(n,m);

%Граничные условия

К-во Просмотров: 370
Бесплатно скачать Контрольная работа: Конечно-разностный метод решения для уравнений параболического типа