Контрольная работа: Критерии оптимальности в эколого-математических моделях

Чтобы сравнить этот результат с логистическим уравнением

его переписали в переменных

и продифференцировали:

Полученное совпадение показывает, что любое решение логистического уравнения является решением динамического уравнения, выведенного из функционала действия. Однако, не любое решение уравнения является решением логистического уравнения. Для выявления взаимосвязи между данными уравнениями было проведено исследование полученного уравнения эволюции. После некоторых преобразований и интегрирования было получено выражение

Уравнение эволюции характеризуется константой R : при R > 0 популяция неограниченно растет, при R < 0 популяция достигает максимального значения, а затем уменьшается до 0. Значение R = 0 приводит к логистическому уравнению, тем самым, показывая, что логистический рост – это особый случай равновесия между неограниченным ростом и затуханием.

В работе также был рассмотрен вопрос об интерпретации введенного таким образом “биологического” действия. Описание в терминах кинетической и потенциальной энергии неприемлемо, поскольку ведет к неизменности общей энергии системы (экологические системы обычно подразумеваются открытыми). По аналогии с физикой, где действие разделено на свободное движение и взаимодействие, предлагалось рассматривать действие как сумму члена, описывающего популяцию, которая не подвержена помехам в росте, и члена V (x ), описывающего внешнее влияние среды на популяцию. Однако, подобная интерпретация хорошо описывает лишь случай V (x ) = 0, когда применение вариационного принципа приводит к уравнению экспоненциального роста. Сам М.Гатто и его соавторы описывали действие как цену роста.

По мнению Дж.Вебба, применение вариационного принципа позволяет сместить акцент с поведения системы на факторы, которые его определяют, а также делает возможным разделение внутреннего поведения популяции и эффектов внешней среды.


3 Модели случайных стационарных процессов и принципы, на которых они основываются

Модели случайных стационарных процессов рассматривают систему как совокупность взаимодействующих элементов со случайными свойствами. В модель вводиться функция распределения показателей состояния и глобальная характеристика взаимодействия компонентов (энтропия, энергия или вещественый результат). Область применения рассматриваемых моделей ограничивается описанием неструктурированных гомогенных систем, когда необходимо оценить воздействие многих факторов на результирующий признак

Статистические модели строятся при допущении, что исследуемый процесс случаен и может быть изучен с помощью статистических методов анализа систем. Они включают: эмпирические- и динамические статистические модели, корреляционный и факторный анализ, многомерное шкалирование, анализ временных рядов. Для снижения размерности статистических моделей используется ряд методов, например выделение главных компонент в регрессионных уравнениях и гармонических рядах.

3.1 Эргодичность стационарного случайного процесса

Для некоторых процессов вдостаточно длинных реализациях случайного процесса содержатся все его значения. Следователь­но, помимо статистическихсредних характеристик процесса, определяемых пу­тем усреднения по ансамблю возможных значений процесса, имеется возможность определить временныесредние харак­теристики путем усреднения по времени до­статочно длинной реализации процесса.

Случайные процессы, у которых стати­стические и временные средние характери­стики совпадают, называются э р г о д и ч е с к и м и. Далеко не все случайные про­цессы удовлетворяют условию эргодично­сти. Однако многие стационарные процессы этому условию удовлетворяют и для них (несмотря на флюктуации временных сред­них характеристик от одной реализации к другой) с вероятностью, равной единице, временные средние совпадают со статисти­ческими средними:

где - реализации процесса, сдвинутые на .

Можно показать (теорема Винера – Хинчина), что функция корреляции стационарного случайного процесса является Фурье-преобразованием некоторой функции частоты :

()

Физический смысл следует из условия , при котором - средняя мощность процесса, а следовательно - его спектральная плотность мощности (спектр мощности).

Иначе говоря, функция корреляции со­держит полную информацию о распределе­нии энергии процесса по частоте, но не мо­жет дать сведений о частотном распределе­нии амплитуд и фаз спектральных состав­ляющих реализаций процесса.

Многие распространенные случайныепроцессы приближенно можно описать кор­реляционной функцией вида

и соответствующей ей спектральной плот­ностью

.

Итак, спектр мощности и функция кор­реляции не являются независимыми харак­теристиками случайного процесса. Обе эти характеристики определяют степень вероят­ностной связи между значениями сигнала в различные моменты времени или, как ино­гда говорят, степеньпоследейст­вияпроцесса. Процесс считается не имею­щим последствия, если вероятность наступ­ления последующих значений процесса не зависит от того, какими были предыдущие значения. В процессах с последействием, на­оборот, предыдущее значение процесса влия­ет на вероятность наступления последу­ющего или ряда последующих значений процесса. Чем сильнее выражено последей­ствие процесса, тем больше максимальный интервал времени , в течение которого данное значение процесса еще влияет на следующие за ним значения.

К-во Просмотров: 276
Бесплатно скачать Контрольная работа: Критерии оптимальности в эколого-математических моделях