Контрольная работа: Критерии оптимальности в эколого-математических моделях

Это означает, что оценка (17) - смещена и равна

. (19)

Можно показать, что она является и состоятельной.

Смещение устраняется с переходом от к . При

этом вместо (17) имеем

. (20)

Для дисперсии оценки (17), равной дисперсии погрешности (18), можно получить [1-3]

, (21)

где - четвертый смешанный центральный момент системы (X Y ). При Y = X выражения (20) и (21) превращаются в (15), (16). Если система ( X Y ) распределена нормально, то и согласно (21)

Так как значения Rxy , Dx , Dy неизвестны, то практически используется приближение

. (22)

Среднее квадратическое значение погрешности (18) равно среднему квадратическому отклонению оценки (20):

. (23)

Оценка коэффициента корреляции определяется согласно

. (24)
Если оценки , получены в результате одной серии наблюдений, а оценка врезультате другой, то их погрешности , независимые случайные величины, являющиеся аргументами линейной функции:

. (25)

Значение рассчитывается согласно (15), доверительный интервал – по формуле (8).

3.4 Определение вероятности события

Экспериментальное значение вероятности Р некоторого события - это частость [1-3]

,(26)

причем число п появлений события в серии из N испытаний можно рассматривать как сумму N независимых случайных слагаемых:

,(27)

каждое из которых может принимать только два значения 1 и 0 с вероятностями P и 1 – P .

Математическое ожидание и дисперсия случайной величины Xi :

. (28)

Погрешность оценки (26) равна

. (29)
Математическое ожидание погрешности и ее дисперсия:

. (30)

К-во Просмотров: 279
Бесплатно скачать Контрольная работа: Критерии оптимальности в эколого-математических моделях