Контрольная работа: Линейные функции

Получим уравнение плоскости:

Запишем условие перпендикулярности плоскостей:

Условие, что искомая плоскость:

через точку А: ;

через точку В: .

Получим систему уравнений:

Складываем 2-е и 3-е уравнения: , 1-е уравнение умножаем на 2 и вычитаем из полученного:

Из 1-го уравнения: .

Из 3-го уравнения: . Принимаем , получаем

.

Уравнение плоскости имеет вид:

№ 4. Найти расстояние от точки до прямой .

Расстояние r найдем по формуле расстояния от точки до прямой, заданной уравнением в канонической форме:

№ 5. Найти длину отрезка, отсекаемого от оси ординат плоскостью, которая проходит через точку перпендикулярно вектору , где В — точка пересечения медиан треугольника, вершины которого совпадают с точками пересечения осей координат с плоскостью

Для нахождения решения найдем уравнение плоскости, которая проходит через точку А в заданном направлении и подставим в это уравнение значение .

Для этого вначале найдем координаты точки В.

Точку пересечения заданной плоскости с осью ОХ найдем из уравнения:

с осью OY:

с осью OZ:

К-во Просмотров: 333
Бесплатно скачать Контрольная работа: Линейные функции