Контрольная работа: Линейные функции

9.3. Найти значение ее параметра р.

Из уравнения—— видно, что .

9.4. Записать уравнение ее оси симметрии.

Данная ось проходит через вершину параболы перпендикулярно оси ОХ, ее уравнение .

9.5. Построить данную параболу.

Все параметры известны. Найдем пересечение с осью OY.

№ 10. Дана кривая .

10.1. Доказать, что эта кривая — эллипс.

Каноническое уравнение эллипса

Общее уравнение кривой второго порядка:

.

Перепишем заданное уравнение:


Введем обозначения:

Если имеем эллипс. Проводим вычисления при a=8, b=6, c=17,d=-14, l=-23, f=-43.

следовательно, исходная кривая — эллипс.

10.2. Найти координаты центра его симметрии.

Применим формулу:

10.3. Найти его большую и малую полуоси.

Для этого приведем уравнение к каноническому виду, вычислим:


К-во Просмотров: 331
Бесплатно скачать Контрольная работа: Линейные функции