Контрольная работа: Линейные функции

где

Получим уравнение эллипса в новых координатах, где осями координат являются оси, полученные переносом начала координат в центр эллипса и поворотом осей на угол α, определяемый уравнением , при этом угловой коэффициент новой оси

10.4. Записать общее уравнение фокальной оси.

Фокальная ось проходит через фокус перпендикулярно оси . В новых координатах .

Воспользуемся формулой преобразования координат:


Осталось составить уравнение прямой, проходящей через точку с коэффициентом наклона 2. Общий вид такой прямой , получим:

10.5. Построить данную кривую.

Для этого в старой системе координат строим новую систему. Новые оси направлены по прямым — y=2x-1 и . Далее, определим вершины эллипса.

В новых координатах они равны .

В старых:


К-во Просмотров: 334
Бесплатно скачать Контрольная работа: Линейные функции