Контрольная работа: Линейные функции

Получаем уравнение прямой

Используем формулу расстояния между двумя точками:

По условию второе решение не походит, т.к. x<0.

№ 8. Дана кривая

8.1. Доказать, что эта кривая — гипербола.

— это каноническое уравнение гиперболы. Приведем исходное уравнение к этому виду

Это каноническое уравнение гиперболы.

8.2 Найти координаты ее центра симметрии.

Сделаем схематический чертеж:

Центр симметрии гиперболы в точке .

.

8.3. Найти действительную и мнимую полуоси.

8.4. Записать уравнение фокальной оси.

Фокальная ось проходит через фокус , р-фокальный параметр (половина хорды, проведенной через фокус перпендикулярно действительной оси).

Уравнение , где

8.5. Построить данную гиперболу построение проведено в п.8.2.

№ 9. Дана кривая .

9.1. Доказать, что данная кривая — парабола.

Каноническое уравнение параболы , заданное уравнение приведем к этому виду

следовательно, имеем параболу.

9.2. Найти координаты ее вершины.

К-во Просмотров: 335
Бесплатно скачать Контрольная работа: Линейные функции