Контрольная работа: Логистические операции
550 / (6,75) = 81,48 ; 125 / 0,625 = 200 ; 1625 / 1,125 = 1444,44 .
Т.о. ключевой строкой является строка (x4 ).
Делим всю ключевую строку на ключевой элемент. Теперь вычитаем ключевую строку из всех оставшихся строк системы, так чтобы в ключевом столбце все элементы кроме ключевого были нулевыми. Построим полученную таблицу:
Таблица 2.4
Базис | х1 | х2 | х3 | х4 | х5 | х6 | bi |
х2 | 0 | 1 | 0,444 | 0,148 | ‑0,037 | 0 | 81,48 |
х1 | 1 | 0 | 0,7225 | ‑0,0925 | 0,148 | 0 | 74,075 |
х6 | 0 | 0 | 2,5 | ‑0,1665 | ‑0,333 | 1 | 1533,335 |
L1 | 0 | 0 | 8,0475 | 2,6825 | 9,704 | 0 | 10850 |
Все коэффициенты при переменных в строке целевой функции неотрицательные, это означает что достигнуто оптимальное решение. Значения переменных записаны в столбце ресурсов в той строке, на пересечении которой со столбцом переменной стоит не нулевой элемент. Получено оптимальное решение : x1 = 74 , x2 = 81,5 , x3 = 0 , x4 = 0 , x5 = 0 , x6 =1533, максимум целевой функции
L1= 10850 (д.е.).
Проверим максимум функции:
L1 = 75 * 74 + 65 * 81,5 + 25 * 0 = 10850 д.е.
Т.е. для максимизации объема продаж в стоимостном выражении предприятие должно выпускать 74 единицы продукции П1 и 81,5 единицы продукции П2.
По последней симплекс таблице видим, что полностью израсходованы материалы и трудовые ресурсы. Оборудование может еще работать 1533 станко-часов.
Определим интервалы устойчивости двойственных оценок по отношению к изменению сырья каждого из видов в отдельности.
Составим матрицу А из элементов столбцов, соответствующих переменных x4 , x5 , x6 оптимальной симплексной таблицы:
Умножим матрицу А на вектор :
где Δb1 , Δb2 , Δb3 – предполагаемое изменение соответствующего вида сырья
Запишем условие неотрицательности компонент полученного вектора AB, которое будет одновременно условием устойчивости базисных оценок.
Определим при каких значениях Δb1 , Δb2 , Δb3 эта система неравенств верна.
Если Δb1 = Δb2 = 0 , то решая систему получим Δb3 ≥ – 1533 .
Если количество доступных станко-часов работы оборудования будет уменьшено в пределах 1533 единиц или увеличено произвольным образом, то двойственное решение системы не измениться.
Если Δb1 = Δb3 = 0 , то решая систему получим: – 500 ≤ Δb2 ≤ 2003.
Если количество доступных человеко-дней будет уменьшено в пределах 500 единиц или увеличено не больше чем на 2003единиц, то двойственное решение системы не измениться.
Если Δb2 = Δb3 = 0 , то решая систему получим: – 550 ≤ Δb1 ≤ 800
Если количество материалов будет уменьшено в пределах 550 единиц или увеличено не больше чем на 800единиц, то двойственное решение системы не измениться.
Проведем анализ устойчивости к изменению коэффициентов целевой функции.
Составим систему по последней симплекс таблице: