Контрольная работа: Математическая статистика
п = 90 + 690 + 220 = 1000 ,
Найдем вероятности события А при условии, что события Bi ( i = 1,2,3 ) наступили, т.е. найдем вероятности выбора бракованной лампы при условии, что лампы взяты из 1-ой, 2-ой, 3-ей партий :
По формуле полной вероятности найдем искомую вероятность:
Задание 9. В магазин поступают однотипные изделия с трех заводов, причем i-й завод поставляет тi % изделий ( i = 1, 2, 3). Среди изделий i-го завода ni % первосортных. Куплено одно изделие. Оно оказалось первосортным. Определить вероятность того, что купленное изделие выпущено j-ым заводом.
.
Решение:
Определимся с событиями:
А – купленное изделие первосортное;
изделие выпущено i-ым заводом, .
Запишем вероятности событий Вi :
Запишем условные вероятности, т.е. вероятности того, что купленное изделие первосортное при условии, что оно выпущено i-ым заводом:
Вероятность того, что купленное первосортное изделие выпущено 1-ым заводом, вычислим по формуле Бейеса:
Задание 10. Вероятность наступления некоторого события в каждом из 100 независимых испытаний равна р = 0,8. Определить вероятность того, что число т наступлений события удовлетворяет следующему неравенству:
k1 = 75;
k2 = 90
Решение:
Воспользуемся интегральной теоремой Лапласа :
где Ф(х) – функция Лапласа,
Найдем х1 и х2 :