Контрольная работа: Математическая статистика
Учитывая, что функция Лапласа нечетная, т.е. , получим
.
По таблице найдем :
Искомая вероятность
Задание 12. Дискретная случайная величина Х принимает только два значения х1 и х2 , причем . Известна вероятность р1 = 0,7 возможного значения х1 , математическое ожидание М(Х ) = 1,3 и дисперсия D(X ) = 0,21. Найти закон распределения этой случайной величины.
Решение:
Сумма вероятностей всех возможных значений ДСВ равна 1. Отсюда вероятность того, что Х примет значение х2 равна
р2 = 1 – р1 = 1 – 0,7 = 0,3.
Запишем закон распределения ДСВ Х :
Х | х1 | х2 |
р | 0,7 | 0,3 |
Для нахождения значений х1 и х2 составим систему уравнений и решим ее:
или ;
или
7x1 2 + =19 (x 3)
70x1 2 -182x1 +112 = 0
По условию задачи . Следовательно, задаче удовлетворяет только решение , и искомый закон распределения будет иметь вид:
Х | 1 | 2 |
р | 0,7 | 0,3 |
Задание 12. Непрерывная случайная величина задана функцией распределения . Требуется найти:
а) функцию плотности распределения ;
б) математическое ожидание ;
в) дисперсию ;
г) среднее квадратическое отклонение .
Построить графики функций и .