Контрольная работа: Математическая статистика
п – объем выборки, может быть представлена в виде:
Тогда, искомая эмпирическая функция будет иметь вид :
Строим график функции
г) Несмещенной оценкой математического ожидания в генеральной совокупности является выборочная средняя:
Найдем эту оценку:
xв = (1∙20+3∙10+4∙14+6∙6+7∙10) = = 3,53;
Несмещенной оценкой дисперсии в генеральной совокупности является исправленная выборочная дисперсия:
где DB – выборочная дисперсия.
Найдем выборочную DВ :
=
= (400+300+784+216+700) – 12,46 = 27,54;
Найдем исправленную дисперсию, т.е несмещенную оценку генеральной дисперсии:
Несмещенной оценкой среднего квадратического отклонения в генеральной совокупности служит исправленное среднее квадратическое отклонение:
.
Найдем эту оценку:
.
Задание 14. Найти выборочное уравнение прямой линии регрессии Yна Х по данным, приведенным в корреляционной таблице
Х Y | 7 | 14 | 21 | 28 | 35 | 42 |
10 | 5 | 1 | - | - | - | - |
15 | - | 6 | 5 | - | - | - |
20 | - | - | 6 | 35 | 9 | - |
25 | - | - | 8 | 9 | 2 | - |
30 | - | - | - | 7 | 1 | 6 |
Решение:
□ Определим частоты , т.е. суммы частот появления значений у в каждой строке таблицы. Аналогично, найдем частоты . Очевидно, что , т.е. суммы частот равны объему выборки. В результате получим таблицу:
Х К-во Просмотров: 424
Бесплатно скачать Контрольная работа: Математическая статистика
|